

Suitability of Egyptian Clover and Alfalfa as Safe Habitats **Tonatural Enemies** The in **Egyptian** Agrosystem

Amany, A. Khalifa¹ and Badawy, A.S.M.²

- 1 Biological Control Department, Plant Protection Research Institute, ARC, Egypt
- 2 Forage Crops ResearchDepartment, Field Crops Research Institute, ARC, Giza, Egypt

DOI:10.21608/JALEXU.2024.272983.1191

Article Information

Received: February 26th 2023

Revised: March 12th 2024

Accepted:March 2024

Published: March 31st 2024

ABSTRACT: In Egypt, clover is the main forage crop, particularly in winter. It plays a vital role in the sustainability of agricultural ecosystem, as it enriches the soil by fixation of atmospheric nitrogen. Clover is an environmentally friendly crop because no pesticides are used. The present study was carried out at the experiment farm of Sakha Agricultural Research Sation during 2020/2021 and 2021/ 2022 seasons from November to June to survey arthropods using the seep net at Egyptian clover, Trifolium alexandrium and alfalfa, Medicago sativa fields.

The relative abundances of nine insect pest species were monitored. The specific insect pest of clover, Hypera brunnipennis (Boheman) was collected in small portions (5.16 and 4.83% out of total collected insect pests) from Egyptian clover and alfalfa plots, respectively. Sitona lividipes exhibited the highest relative abundance with values of 57.15 and 30.92% on Egyptian clover and alfalfa, respectively. On the other hand, 17 insect predator species were collected. Orius spp. were the most occurring predators, with relative abundances of 24.64 and 25.96%, and coccinellids exhibited considerable portions with values of 45.07 and 53.51% out of total collected predators on both crops, respectively. Parasitism of Hypera brunnipennis eggs by Anaphes fusceipennis was monitored from March 23rd till the end of the season, and was assessed as 21.72 and 17.92% in the first and second seasons, respectively.

Keywords: Egyptian clover, alfalfa *Hypera brunnipennis*, natural enemies

INTRODUCTION

Clover, Trifolium alexandrinum L. is a crucial fodder crop belonging to Leguminosae, and suitable to be grown at moderate and semi arid climates of Mediterranean areas. Clover is very popular among dairy people, particularly as it is a high nutritional crop, with a surplus of yield throughout its growth stages.

Unfortunately, this important fodder crops are liable to attacks of several insect pests. Abdel Fattah and EL-Saadany (1978) surveyed 64 arthropod.species, from clover fields, that were classified into Diptera (36%), Hymenoptera (27%), Coleoptera (18%) and Hemiptera (8%), as well as someother orders. **Tawfik** et al (1980) collected, from clover fields, 93 arthropod species, belonging to 50 families and seven orders. Wagan et al (2015) surveyed aphids, lead miners, thrips, whitefly and cutworms, as harmful insects inhabiting this crop. Spodoptera littorahis, S. exigua and Aphis gossypii were surveyed from clover fields as harmful insect pests, while Coccinella undecimpunctata, Apis mellifera and Vespa orientahis were categorized as beneficial insects (Mohammad and Hafez

2023, at Kafr El- Sheikh region). Boraei et al (1993) surveyed the insect pests inhabiting clover fields, and indicated that one of important damaging insects is Hypera brunnipennis (Boheman). The latter insect pest was found present in clover fields allover the season, beginning from December up to May (Rakha **2008**, and Awadalla *et al* **2014**). *H*. brunnipennis was considered, by El- Husseini (2019), as a damaging insect pest to both Egyptian clover and alfalfa.

Because clover fields are rarely treated with pesticides, this gives a good opportunity to flourishing of natural enemies. On the other hand, the intensive growth of Egyptian clover and alfalfa serves as a good shelter to the natural enemies complex to manage the harmful insects particularly that both crops are used as fodder to animals.

The objectives of this investigation were to compare between clover and alfalfa as habitats for insect pests and as shelters for natural enemies. In addition, correlation coefficients were computed to find out the relationship

between populations of some natural enemies and insect pests

MATERIALS AND METHODS

1. Cultural Practices

The present work was carried out at the experimental farm of Forage Research Department, Sakha Agricultural Research Station, for two successive seasons; 2020/2021 and 2021/2022. The Egyptian clover, *Trifolium alexandrinum* L.(Helaly cultivar) and alfalfa, *Medicago sativa* L. .(Nubaria 1 cultivar) were sown in areas of 2000 and 200 m², respectively. Both crops were sown in the last week of October in both seasons.

Normal cultural practices, as recommended by Egypt's Ministry of Agriculture, were followed throughout the season, without any pesticide applications.

2. Insect Sampling

About one month after sowing, weekly insect samples were collected using 50 double strokes by the sweep net. The catch was introduced into 2- liter glass jars and transferred to the laboratory for sorting and counting. Specimens of collected insects were sent to Survey and Classification Department, and Biological Control Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Cairo for identification.

3. Meteorological Records

Records of meteorological factors were obtained from Sakha Meteorological Research Station to find out the effect of these factors on the populations of theconsidered insects.

4. Parasitism of Hypera brunnipennis

Parasitism of Hypera brunnipennis eggs was monitored through a lab- field experiment. Plastic pots, 30 cm diameter, and 30 cm depth filled with proper soil were confined in screen cages (45x45x60 cm). Egyptian clover plants, at the vegetative stage (bout 45 cm height), were pulled out from clover fields, and transplanted into the pots. Using the sweep net, adults of H. brunnipennis were collected from clover fields and released inside the cages onto clover plants, where H. brunnipennis adults lay their eggs. The following day, the pots were taken out from the cages and moved to the field and fixed among the clover plants to allow parasitoids lay their eggs (if any on H. brunnipennis eggs). Twenty-four hours later, clover plants, in the pots, were examined, and the H. brunnipennis eggs were collected and incubated at the room temperature. These procedures were weekly practiced, beginning from December 1st up to May 4th in both seasons; 2020/2021 and 2021/2022. The incubated eggs

were monitored to record the number of emerging parasitoids, or *H. brunnipennis* hatching larvae. Thus, the parasitism percentage was calculated

RESUTS AND DISCUSSION

1. Insect Pest Species

The relative abundances of nine insect pest species are presented in Table (1) on Egyptian clover, Trifolium alexandrinum L. versus alfalfa, sativa L. in 2020/2021 and Medicago 12021/2022 seasons. As averages of both seasons, Sitona lividipes and leafhoppers exhibited the highest relative abundance on Egyptian clover, with values of 57.15 and 19.14%, and on alfalfa with values of 30.92 and 34.65%, respectively. Aphids occupied the third rank of occurrence (12.40%) on Egyptian clover but constituted a higher portion (25.25%) on alfalfa. The remaining five insect pest species were found in low relative abundance. However, the specific insect pest of clover, Hypera brunnipennis was collected in small portions; 5.16 and 4.83% on Egyptian clover and on alfalfa, respectively.

2. Insect Predator Species

Seventeen insect predator species were collected from each of Egyptian clover and alfalfa fields (Table 2). *Orius* spp were the most occurring in Egyptian clover and alfalfa fields, with relative abundances of

24.64 and 25.96%, respectively. Also, Coccinella undecimpunctata constituted considerable portions on both crops with values of 8.93 and 12.63%, respectively. Despite Oxytelus nitidulus was represented by 12.33% out of total catch of Egyptian clover, it represented only 2.80% in case of alfalfa. The situation was found reversed with Hippodamia convergens, H. tredecimpunctate and H. variegata which constituted only 3.20, 1.58 and 1.42% out of total predator populations in Egyptian clover compared to 13.20, 9.64 and 9.23% in alfalfa, respectively. In addition, Paederus alfierii was represented by 5.52 and 7.19% Egyptian clover and alfalfa, in respectively.

3. Parasition of Hypera brunnipennis eggs by Anaphes fusceipennis

Eggs of *H. brunnipennis* were almost free from parasitoids (Table 3) from December 1st up to January 26th, the parasitoid activity gradually increased to exhibit the first peak (33.33%) on February 16th, and then relatively decreased, but later, the parasitoid demonstrated the highest peak (38.24%) on March 16th. Then, the parasitism decreased and was completely absent from April 20th till the end of the season.

Table (1): Relative abundance of insect pests attacking Egyptian clover and alfalfa at the experimental farm of Sakha Agricultural Research Station

<u>-</u>				Tot	al num	bers of inse	ect pests	s/1500 do	ouble str	okes	
	Stage		E	ı clover	•	_	Alfala				
insect pest		2020-2021		2021-2022		Overall	2020-2021		2021-2022		Overall
		NO	%	NO	%	average	NO	%	NO	%	- average
Hypera brunnipennis	A	238	6.12	128	4.19	5.16	112	3.45	134	6.21	4.83
Sitona lividepis	A	2244	57.75	1728	56.54	57.15	1195	36.85	539	24.99	30.92
Nezara viridula	A,N	92	2.37	222	7.26	4.82	124	3.82	36	1.67	2.75
Aphids	A,N	498	12.81	366	11.98	12.4	892	27.51	496	22.99	25.25
Leafhoppers	A,N	768	19.76	566	18.52	19.14	912	28.12	888	41.17	34.65
Autographa spp	L	26	0.67	16	0.52	0.6	0.00	0.00	24	1.11	0.056
Spodoptera exigua	L	2	0.05	0.00	0.00	0.03	6	0.19	0.00	0.00	0.1
Spodoptera littoralis	L	6	0.15	12	0.39	0.27	0.00	0.00	2	0.09	0.05
Eupropocnemis plorans	A,N	12	0.31	18	0.59	0.45	2	0.06	38	1.76	0.91
Total		3886	0.00	3056	0.00	0.00	3243	0.00	2157	0.00	0.00

Table (2): Relative abundance of insect predators associated with insect pests in Egyptian clover and alfalfa at the experimental farm of Sakha Agricultural Research Station

				Total	number	s of insect p	ests/150	0 double	trokes			
	ge		Egyp	tian clo	ver			Alfala				
insect predatory species	Stage	2020-20	021	2021	-2022	Overall	2020	-2021	2021-2022		Overall	
	•	NO	%	NO	%	average	NO	%	NO	%	average	
Coccinella novemmtata	A	4	0.37	12	2.69	1.63	0.00	0.00	0.00	0.00	0.00	
C.septempunctata	A	8	0.74	136	30.49	15.62	0.00	0.00	30	8.29	4.15	
C.undecimpunctata	\mathbf{A}	188	17.41	2	0.45	8.93	146	25.26	0.00	0.00	12.63	
Cydonia vicina isis	\mathbf{A}	2	0.19	0.00	0.00	0.1	0.00	0.00	0.00	0.00	0.00	
Hippodomia convergens	A	40	3.7	12	2.69	3.2	60	10.38	58	16.02	13.2	
Hippodomiatredecimpunct	A	34	3.15	0.00	0.00	1.58	22	3.81	56	15.47	9.64	
Hippodomia variegata	A	16	1.48	6	1.35	1.42	30	5.19	48	13.26	9.23	
Rhizobius lihura	\mathbf{A}	6	0.56	0.00	0.00	0.28	22	3.86	8	2.21	3.04	
Scymnus interruptus	A	20	1.85	30	6.73	4.29	0.00	0.00	4	1.1	0.55	
Scymnus syriacus	A	10	0.93	42	9.42	5.18	0.00	0.00	4	1.1	0.55	
Scymnus ailvifroms	A	2	0.19	8	1.79	0.99	6	1.04	0.00	0.00	0.52	
Scymnus spp	A	6	0.56	14	3.14	1.85	0.00	0.00	0.00	0.00	0.00	
Oxytelus nitidulus	A	150	13.89	48	10.76	12.33	10	1.73	14	3.87	2.8	
Paederus alfierii	A	32	2.96	36	8.07	5.52	32	5.54	32	8.84	7.19	
Orius spp	A, N	508	47.03	100	2.24	24.64	134	23.18	104	28.73	25.96	
Chrysoperla carnea	\mathbf{L}	40	3.7	0.00	0.00	1.85	108	18.69	4	1.1	99	
Ischnura senegalenis	A	14	1.3	0.00	0.00	0.65	8	1.38	0.00	0.00	0.69	
total		1080		446			578		362			

Table (3): Parasitism of eggs of Hypera brunnipennis inhabiting Egyptian clover fields by *Anaphes fuscipienis* at the experimental farm of Sakha Agricultural Research Station

D 4		2020-2021		2021-2022	,	
Date	Eggs	parasitoid	%	Eggs	parasitoid	%
Dec.1	0	0	0.00	0	0	0.0
8	0	0	0.00	8	1	12.50
15	0	0	0.00	6	1	16.67
22	8	1	12.50	10	2	20.00
29	8	1	12.50	28	4	14.29
Jan.5	0	0	0.00	40	9	22.50
12	0	0	0.00	8	1	12.50
19	0	0	0.00	0	0	0.00
26	8	0	0.00	0	0	0.00
Feb.2	18	3	16.67	0	0	0.00
9	26	5	19.23	16	4	25.00
16	36	12	33.33	40	11	27.50
23	28	6	21.43	6	1	16.67
Mar.2	38	7	18.42	12	2	16.67
9	20	4	20.00	6	1	16.67
16	68	26	38.24	18	1	5.56
23	44	12	27.27	6	0	0.00
30	16	2	12.50	8	0	0.00
Apr.6	18	3	16.67	0	0	0.00
13	48	4	8.33	0	0	0.00
20	12	0	0.00	0	0	0.00
27	0	0	0.00	0	0	0.00
May.4	0	0	0.00	0	0	0.00
Total	396	86	21.72	212	38	17.92

The parasitism status of *H. brunnipennis* eggs in 2021/2022 season (Table 3) was different from that of the first season. The parasitoid was active throughout December up to January 12th, with a parasitism ranging between

12.50 and 22.50%. Specimens of host eggs were free from parasitism from January 19th up to February and then, the parasitoid recovered its activity, beginning from February 9th (25.00% parasitism), and recorded the highest peak (27.50%) on February 16th. Then, the parasitism gradually decreased to reach minimum (5.56%) on March 16th. However, the monitoring revealed the absence of the parasitoid from March 23rd. till the end of the season, on May 4th. Seasonal averages of parasitism were 21.72 and 17.92% in the first and second seasons, respectively.

4.Population fluctuations of dominant insect pests and associated predators in 2020/2021 season

4.1. Insect pests

Hypera brunnipennis had three peaks (**Table 4**) of insect adults with 32, 76 and 38 individuals/100 double strokes at Egyptian clover fields on January 18th, March 18th and on April 17th, respectively. Only one peak of 72

adults was attained in alfafa fieldl on March 18th. Total insect populations were 238 and112 adults/1500 double strokes in Egyptian clover and alfalfa, respectively.

Sitona lividipes adults were attained in two peaks of 480 and 644 adults/100 double strokes on March 18th and April 17th, respectively, with a total count of 2244 adults/1600 double strokes throughout the season compared to 1195 adults in case of alfalfa.

Nezara viridula nymphs and adults were collected in few numbers throughout the season from both crops. However, the insect population was notably found during May and June, with totals of 92 and 124 nymphs and adults/1500 double strokes throughout the season on Egyptian clover and alfalfa, respectively.

Aphid nymphs and adults were more captured by the sweep net, from Egyptian clover on February 3rd and 18th, and on April 2nd and 17th. The same trend was found in alfalfa fields. Total seasonal counts revealed that alfalfa harbored more aphids than had Egyptian clover; with 892 and 498 nymphs and adults/1500 double strokes, respectively.

Leafhopper nymphs and adults mainly occurred on Egyptian clover on April 2^{nd} and 17^{th} and on June 2^{nd} with densities of 202, 184 and 232 Individuals/100 double strokes, respectively. On alfalfa, the major insect densities were captured on April 2^{nd} , May 3^{rd} and 18^{th} and June 2^{nd} , with

106, 150, 292 and 130 nymphs and adults, respectively. Total seasonal counts were 768 individuals on Egyptian clover compared to 912 individuals on alfalfa/1500 strokes, respectively (Table 4)

`

Table (4): Biweekly numbers of the major insect pests and associated predators on Egyptian clover and alfalfa at Sakha Agricultural Research Station, during 2020/2021 season

2021 Season				No.	of insec	ct pests	and ass	ociated	predate	ors /100	double	strokes						
		Egyptian clover												Alfalfa				
Inseption date	Hypera brunneipennis	Sitona lividipes	Nezara viridula	Aphids	Leafhoppers	Coccinellids	Staphylinds	Chrysoperlacarnea	Orius spp	Hypera brunneipennis	Sitona lividipes	Nezara viridula	Aphids	Leafhoppers	Coccinellids	Staphylinds	Chrysoperlacarnea	Orius spp
stage	A	A	A. N	A. N	A. N	L	L	L	A. N	A	A	A. N	A. N	A. N	L	L	L	A. N
Nov.24	0	88	0	0	20	2	0	0	0	0	18	0	2	6	0	4	0	0
Dec.8 22	0	140	0	0	14	0	2	2	0	0	136	6	10	20	0	0	0	4
Dec.6 22	4	116	0	0	12	0	4	2	0	2	544	10	0	40	0	6		
Jan. 5 20	0	26	0	0	0	0	0	0	0	0	64	0	0	2	0	0	0	0
	2	56	0	4	0	0	0	0	0	0	32	0	8	2	0	0	0	0
Feb.318	22	94	0	26	8	0	38	0	0	0	42	0	48	8	0	2	2	0
	32	10	0	36	10	0	0	0	0	0	14	2	124	0	2	0	0	0
Ma318	26	80	0	8	24	4	14	0	0	8	10	0	20	42	0	16	0	0
	76	480	0	0	4	2	10	2	0	72	134	0	0	56	98	6	6	6
Apr.217	18	100	0	150	202	0	38	4	8	8	5	0	30	106	0	4	2	0
трг.217	38	644	0	274	184	16	50	14	22	10	34	4	404	34	2	10	54	2
May.318	18	310	12	0	28	146	28	6	12	4	58	8	216	150	24	0	26	0
1v1ay.310	2	66	54	0	0	84	4	0	8	2	74	24	0	292	96	0	4	32
I 212	0	30	6	0	232	72	0	10	158	6	30	22	0	130	54	0	8	60
Jun.213	0	4	20	0	30	18	0	0	300	0	0	48	0	24	12	0	0	30
Total	238	2244	92	498	768	342	188	40	490	112	1195	124	892	912	286	48	108	130

(**JAAR**) **Volume: 29** (1)

4.2. Insect Predators

Coccinellid larvae occurred intensively on both crops during the period from May 3rd up to June 2nd, with total populations, throughout the season, of

342 and 286 larvae/1500 double strokes on Egyptian clover and alfalfa,respectively.

Staphylinid larvae were collected in relatively high numbers, from Egyptian clover as well as from alfalfa during March, April and May. Total seasonal counts were higher (188 larvae /1500 double strokes) on Egyptian clover than on alfalfa (48 larvae) (Table4).

Chrysoperla cranea larvae were rarely collected throughout the season on both crops. The densities were relatively high on Egyptian clover by mid-April and early Jane; 14 and 10 larvae/100 double strokes, respectively. On alfalfa, high numbers were found on April 17th and on May 3rd, with densities of 54 and 26 larvae /100 double strokes, respectively. Thus, this chrysopid was more collected from alfalfa than from Egyptian clover.

Orius spp nymphs and adults were captured from Egyptian clover by the sweep net mainly on June 2nd (158) and on June 13th (300), compared to 60 and 30 nymphs and adults/100 double strokes from alfalfa fields. Total counts were 490 and 130 nymphs and adults/1500 double strokes, from Egyptian clover and alfalfa, respectively.

5.Population fluctuations of dominant insect pests and associated predators in 2020/2021

5.1. Insect pests

Hypera brunnipennis adults

Adults of *H. brunnipennis* appeared in Egyptian clover fields in three peaks; 24, 18 and 12 individuals/100 double strokes on January 5th, February 18th and on May 3rd, respectively with a total number of 128 adults/1500 double strokes, throughout the season. In alfalfa fields, two peaks were attained; with 26 and 18 adults /100 double strokes on January 20th and April 2nd, with a total of 134 adults/1500 double strokes throughout the season.

Table (5): Biweekly numbers of the major insect pests and associated predators on Egyptian clover and alfalfa on at kafr El-Sheikh Region, during 2021/2022 season

				No	o. of ins	ect pests	s and ass	sociate	d predate	ors /100	double	strocks	<u> </u>					
		Egyptian clover									Alfalfa clover							
Investigation date	Hypera brunneipennis	Sitona lividipes	Nezara viridula	Aphids	Leafhoppers	Coccinellids	Staphylinds	Chrysoperla carnea	Orius spp	Hypera brunneipennis	Sitona lividipes	Nezara viridula	Aphids	Leafhoppers	Coccinellids	Staphylinds	Chrysoperla carnea	Orius spp
stage	A	A	A. N	A. N	A. N	L	L	L	A. N	A	A	A. N	A. N	A. N	L	L	L	A. N
Nov.24	2	88	0	0	2	0	0	0	0	0	20	0	0	0	0	0	0	0
Dec.8	10	480	0	0	0	8	6	0	0	0	34	2	4	6	0	2	0	0
22	14	348	4	0	12	4	0	0	0	0	82	8	0	40	0	0	0	6
Jan. 5	24	110	0	0	6	0	8	0	0	0	10	10	50	0	0	0	0	0
20	4	28	0	0	4	0	2	0	0	26	41	0	0	56	0	0	0	0
Feb.3	4	52	0	0	22	0	6	0	0	24	42	0	0	472	8	4	0	0
18	18	66	0	4	10	0	0	0	0	22	10	0	30	40	0	10	0	0
Mar.3	12	78	0	0	110	12	10	0	0	16	68	0	0	14	42	10	0	0
18	10	68	0	22	12	0	22	0	0	18	54	0	0	20	0	6	0	0
Apr.2	8	50	0	154	104	0	4	2	2	18	46	0	24	44	0	0	0	0
17	10	130	0	186	264	36	6	0	0	6	42	2	136	24	0	0	0	0
May.3	12	200	0	0	18	114	16	0	0	4	34	4	130	66	18	2	0	0
18	0	28	36	0	2	40	2	0	0	0	56	8	90	36	22	0	4	18
Jun.2	0	2	148	0	0	26	0	0	20	0	20	2	32	62	36	0	0	0
13	0	0	34	0	0	24	2	0	80	0	3	0	0	44	126	18	0	80
Total	128	1728	222	366	566	262	84	2	102	134	539	36	496	888	252	52	4	106

(**JAAR**) **Volume: 29** (1)

Sitona lividipes

Adults of *S. lividipes* were collected from the Egyptian clover fields by the sweepnet in three peaks: 480, 78 and 200 individuals/100 double strokes on December 8^{rth}, March 3rd and May 3rd, respectively. In alfalfa fields, also, three peaks were found with 82, 68 and 56 adults/100 double strokes on December 22nd, March 3rd and May 18th, respectively. The total catch, throughout the season, was too much less (539 adults/1500 strokes) than that of Egyptian clover fields (1728).

Nezara viridula nymphs and adults

In general, the population densities of *N. viridula* nymphs and adults were quite low throughout 2021/2022 season. In case of Egyptian clover, the insect was only collected late in the season, ranging between 34 and 148 nymphs and adults/100 double strokes, during the period from May 18th to June 13th with a total of 222 individuals/1500 double strokes. In alfalfa fields, very few numbers were collected with 36 nymphs and adults/1500 double strokes throughout the season.

Aphid nymphs and adults

In the Egyptian clover, nymphs and adults of aphids constituted two peaks of occurrence; 154 and 186 individuals/100 double strokes on April 2nd and April17th, respectively. In alfalfa, also, two peaks were attained with 30 and 136 nymphs and adults on February 18th and April 17th, respectively. Over the whole season, 366 and 496 nymphs and adults were collected/ 1500 double strokes from Egyptian clover and alfalfa, respectively.

leafhopper nymphs and adults

In Egyptian clover fields, leafhoppers exhibited two peaks of occurrence with 110 and 264 nymphs and adults/100 double strokes on March 3rd and April 17th, respectively. However, three peaks were recorded in alfalfa fields with 472, 44 and 66 nymphs and adults/100 double strokes on February 3rd, April 2nd and May 3rd, respectively. Total numbers, over the season, were 566 and 888 nymphs and adults/1500 double strokes in the Egyptian clover and alfalfa fields, respectively.

5.2. Insect predators

Coccinella undecimpunctata adults

Adults of *C. undecimpunctata* were mainly collected from Egyptian clover fields late in the season, by April 17th up to June 13th, ranging between 24 and 114 adults/100 double strokes. This predator appeared in similar numbers in alfalfa fields, with a range of 18-126 adults/100 double strokes. Over the whole

period of the season, the predator populations were 262 and 252 adults/1500 double strokes in the Egyptian clover and alfalfa fields, respectively.

Staphylinid larvae

Staphylinid larvae appeared in the Egyptian clover fields with very low numbers exhibiting two small peaks on March 18th and May 3rd with 22 and 16 larvae/100 double strokes, respectively. The corresponding peaks in alfalfa fields were 10 and 18larvae/100 double strokes on March 3rd and January 13th, respectively. The total numbers for the whole season were 84 and 52 larvae/ 1500 double strokes in clover and alfalfa fields, respectively.

Chrysoperla carnea larvae

This predator was rarely detected with only two and four larvae, from clover and alfalfa, respectively for the whole experimental period.

Orius spp nymphs and adults

This predator was only collected in May from clover fields (102 individuals / 1500 double strokes), compared to 106 individuals/100 doublestrokes in alfalfa fields, where it exhibited two moderate peaks by mid-Mayand mid-June.

6.Correlation coefficient values 6.1.In clover fields

Data presented in Table (6) show that numbers of *H. brunnipennis* adults correlated insignificantly with each of coccinellids and *Orius* spp in both seasons of study. The same result was found between numbers of aphids and the two abovementioned predators. *Sitona lividipes* adults exhibited significant correlations with each of staphylinids and *Chrysoperla carnes* in the first season (2020/2021), and the same result was calculated between both predators and numbers of aphids. In the second season (2021 /2022), nymphs and adults of leafhoppers correlated insignificantly with each of coccinellids and *Orius* spp.

6.2.In alfalfa fields.

Hypera brunnipennis correlated signicantly with staphylinid population in (2020/2021) season, but correlations between *S. lividipes* and all considered predators were not significant, with positive values, except staphylinids in 2021/2022 season. Aphids had highly significant positive correlation with *Chrysoperla carnea* in the first season. As for leafhoppers, the correlations were highly significant positive with coccinellids, and significant positive with *Orius* spp, both in the first

Table (6): Correlations between certain insect pests and associated predators in clover fields, at Sakha Agricultural Research Station.

			Pred	lator	
Insect pest	Year	Coccinellids	Staphylinids	Chrysuperla carnea	Orius spp
Hypera brunnipennis	2020/21	-0.124	0.328	0.234	-0.175
(adults)	2021/22	-0.118	0.322	0.024	-0.317
Sitona lividipes (adults)	2020/21	0.117	0.445*	0.501**	0.191
	2021/22	0.068	0.016	-0.138	-0.358
Aphids (nymphs & adults)	2020/21	-0.193	0.559**	0.487	-0.030
	2021/22	-0.083	0.269	0.386	-0.093
Leafhoppers (nymphs &	2020/21	0.153	0.346	0.468*	0.139
adults)	2021/22	-0.043	0.558**	0.065	-0.212

Table (7): Correlations between certain insect pests and associated predators in alfalfa fields, at Sakha Agricultural Research Station.

		Predator							
Insect pest	Year	Coccinellids	Staphylinids	Chrysuperlacarna	Orius spp				
Hypera brunnipennis	2020/21	0.214	0.406*	0.162	-0.175				
-	2021/22	-0.273	0.100	-0.249	0.289				
Sitona lividipes	2020/2021	0.137	0.079	0.102	0.144				
-	2021/2022	0.081	-0.020	0.164	0.260				
Aphids	2020/2021	-0.194	0.058	0.715**	-0.262				
_	2021/2022	0.009	-0. 240	0.133	0.040				
Leafhoppers	2020/2021	0.654**	-0.019	0.288	0.422*				
	2021/2022	0.130	0.417*	0.188	0.096				

Data in Table (8) show the correlations between weather factors and insect pests and their associated predators in clover fields. In the second season (2021/2022), there were significant positive correlations between maximum temperature and populations of each of *H. brunnipennis*, coccinellids and *Orius* spp.

Minimum temperature correlated in the second season with significant positive values with coccinellids and *Orius* spp. However, maximum relative humidity exhibited negative correlations with the majority of insects and predators.

Table (8): Correlations between weather factors and populations of insect pests and their associated predators in clover fields, at Sakha Agricultural Research Station

			Weathe	er factor	
Insect pest	Year	Temp	Temp	RH%	RH%
		max	min	max	min
Humana humanin annia	2020/21	-0.119	-0.063	-0.177	0.303
Hypera brunnipennis	2021/22	-0.389*	-0.348	0.194	0.338
Sitona lividines	2020/2021	0.258	0.275	-0.408*	0.212
Sitona lividipes	2021/2022	0.019	0.057	-0.180	0.463
Anhida	2020/2021	0.019	0.057	-0.308	0.188
Aphids	2021/2022	0.053	0.108	-0.097	-0.247
I as flammans	2020/2021	0.418*	0.397*	-0.327	0.271
Leafhoppers	2021/2022	0.042	0.009	-0.069	-0.205
Carata III I.	2020/2021	0.852**	0.859**	0.71044.0.715	0.639*
Coccinellids	2021/2022	0.527**	0.711**	-0.619** 0.615	-0.401*
Ctombulinda	2020/2021	0.219	0.109	-0.318	0.141
Staphylinds	2021/2022	-0.146	-0.214	0.031	0.014
Cl	2020/2021	0.486**	0.477**	0.600**0.010	0.529**
Chrysoperla carnea	2021/2022	-0.167	-0.090	-0.608**0.019	-0.028
0	2020/2021	0.413*	0.502**	-0.307	0.502**
Orius spp	2021/2022	0.534*	0.537**	-0.098	-0.187

7.Comparison between Egyptian clover and alfalfa as hosts for insects and predators 7.1.predators in 2020/2021 season

Data in Table (9) show the difference between Egyptian clover and alfalfa as habitats for some insect pests and their associated predators in 2020/2021 season. Populations of *H. brunnipennis*, *S. lividipes* and *Nezara viridula* were collected in significant higher values in Egyptian clover than in alfalfa fields. The

remaining insect pests and all considered predators did not differ significantly between the two habitats in 2020/2021 season.

Date in Table 10) show that populations of S. *lividipes* and *coccinellids*, were significantly higher in clover fields, than in alfalfa ones. The remaining insects and associated predators exhibited no significant differences between the two habitats.

Table (9): Values of "t" test for comparing the population of insects and associated predators between Egyptian clover and alfalfa at Sakha Agricultural Research Station, 20201/ 2021 Season.

Ingast most	Clover	Alfalfa	Mann Whitney II test	_	a i a
Insect pest	Mean rank	Mean rank	—Mann- Whitney U test	Z	sig
Hypera brunnipennis	33.78	25.224	286.5	2.052	0.04*
Sitona lividipes	34.62	24.379	272	2.312	0.021*
Nezara viridula	25.81	33.190	313.5	1.996	0.46*
Aphids	27.10	31.897	351	1.197	0.231
Leafhoppers	25.72	33.276	311	1.72	0.085
Coccinellids	30.55	28.448	390	0.560	0.576
Staphylinds	31.83	27.172	353	1.221	0.222
Orius spp	28.09	30.914	379.5	0.725	0.468
Significant at the 0.05 level	29.55	29.448	419	0.031	0.975

Table (10): Values of "t" test for comparing the population, of insect and associated predators between Egyptian clover and alfalfa, Sakha Agricultural Research Station, 20201/2022 Season.

Insect post	Clover	Alfalfa	Monn Whitney Utest	-	cia
Insect pest –	Mean rank	Mean rank	Mann- Whitney Utest	Z	sig
Hypera brunnipennis	30.03	28.970	405	0.249	0.803
Sitona lividipes	33.97	25.030	291	2.017	0.44*
Nezara viridula	28.17	30.030	382	0.732	0.464
Aphids	26.90	32.100	345	1.432	0.152
Leafhoppers	25.60	33.400	307.5	1.778	0.075
Coccinellids	31.12	27.880	373.5	0.838	0.402
Staphylinds	33.19	25.810	313.5	1.968	0.049*
Orius spp	28.48	30.520	391	1.04	0.296
Significant at the 0.05	29.48	29.520	420	0.013	0.990

DISCUSSION

In the current study, nine insect pest species were surveyed from both Egyptian clover and alfalfa. Only two species; *Hypera brunnipennis* and *Sitona lividipes* could be reported as specific to clover and alfalfa hosts. **El. Kifl et al (1974)** indicated that *Sitona lividipes* life cycle was affected by leguminous host plant as well as the soil type. In our study, *S. lividipes* constituted 57.54 and 30.92% out of the total population of surveyed insect pests from Egyptian clover and alfalfa, respectively. **El-Dessouki and Al- Awady (1978) reported** only one peak of *S. lividipes* per year on Egyptian Clover. The insect population in our study was very high in December and early May. *Hypera*

brunnipennis exhibited, in the current investigation, relatively higher population densities in late March up to early May. El-Mezyyen (2003) encountered two peaks for *H. brunnipennis* in Egypt (in January and April) and in Libya (in March and May). In a biology study on *H. brunnipennis*, Awadalla et al (214) concluded that the life cycle of the pest was shorter when reared on clover, but longer when reared on Kidney bean.

In the current investigation, we surveyed, in addition to *H. brunnipennis* and *S. lividipes*, *Nezara viridula*, aphids, leafhoppers, *Autographa* spp, *Spodoptera littoralis*, *S. exigua* and *Euprepucnemis plorans*. Similar results were obtained by **Wagan** *et al* (2015), in China, who

recorded aphids, leafminers, thrips, whiteflies and cutworm as insect pests inhabiting Egyptian clover. In the same context, **Mabrouk and Mahbob (2017)** surveyed 46 arthropod species from clover and faba bean fields, at Dakhla Oasis, classified into 33 families and nine orders. These species included insect pests, natural enemies and pollinators.

Despite *H. brunnipennis* constituted 4.83-5.16% out of total insect pests recorded in our study, **El-Sheikh** (2019) indicated that this insect pest was a very important pest at El-Farafra Oasis, New valley.

It is important to understand the role of natural enemies in keeping the natural balance in the agricultural ecosystem (El-Husseini et al 2018). In this investigation, we recorded 17 insect predatory species inhabiting both Egyptian clover and alfalfa fields. Summers et al (1981) found large aestivated aggregations of H. brunnipennis inhabiting the same shelters of the insect predators; Hippodamia Convergens Guerin and Coccinella spp which means

that the insect and its predators share similar needs for this stage of their life cycle. **EL Mezayyen** *et al* (2003) found predators similar to those reported herein; *Coccinella spp*, *Chrysoperla carnea*, *Scymnus spp*, *Paederus alfierii* and *Orites* spp.

REFERENCES

Abdel Fattah, M. I., G. El-Saadany (1978). A survey of the insect fauna ofclover fields in Menoufia region, Egypt. Proceedings of the Fourth Conference of Pest Control, September 30 - October 3, 1978. Part 1: 210: 217

Awadalla, S.S., F.D. Abdullah, H.A. K. El-Serafi and Walaa B. F. Badawy (2014). The Egyptian alfalfaweevil, *Hypera brunnipennis* (Boheman) as an insect pest infesting some leguminous crops. J. Plant Prot. and Path, Mansoura Univ., 5(5): 595-603.

Boraei, H., S. M. Metwally, Z. Shenishen. and A. H. Mesbah (1993). Insectfauna of clover, sugar beet, cotton and maize plants at Kafr El-Sheikh Governorate. J. Agric. Res., 19 (40): 822-832

Egyptian alfalfa weevil, *Hypera brunneipennis* (Bohman) (EAW) in response to different leguminous plants. Proc.13th International Conf. Agron., Fac. Agic., Benha Univ., Egypt, 9-10 Sept., 2012, 185-194.

El. Husseini, M. M. M. (2019). Management of the Egyptian alfalfa weevil, *Hypera brunneipennis* (Boheman) (Coleoptera: Curculionidae), in the alfalfa, *Medicago sativa* L., using the entomopathogenic fungus, *Beauveria bassiana* (Balsamo) Vuillemin. Egyptian Journal

of Biological Pest Control, 29,Article number: 82 (2019).

El-Dessouki, S. A. and S. M. El-Awady (1978). Studies on the development of bionomy of *Sitons lividipes* Fhs. (Col., Curculionidae). **Z** ang. Ent., 85:275-280.

El-Husseini, M.M., A. H. El-Heneidy and K.T. Awadallah (2018).

Natural enemies associated with some economic pests in Egyptian agio- ecosystems. Egyptian Journal of Biological Post Control, 28, article number, 78.

El-Kifl, A., S. A. El-Dessouki and S. El- Awady (1974). Effects of host plant and soil type on the life cycle of *Sitona lividipes*. Fhs. Journal of Plant Diseases and Protection, 81 (12): 758-764

El-Mezayyen, G.A. (2003). Stuties on the Egyptian alfalfa weevil, *Hypera brunnipennis* (Boheman) and certain associated predators in Egypt (Kafr El-Sheik) and Libya (Sebha). J. Agric. Sci., Mansoura Univ., 28(11): 6887-6894.

El-Sheikh, W. E. A. (2019). Population dynamics of and seasonal development of the Egyptian alfalfa weevil, *Hypera brunnipennis* (Boh.), Coleoptera: Curculionidae in El Farafra Oasis, New Valley Governorate, Egypt. Journal of Plant Protection and Pathology, 10(6): 311-316.

Mabrouk, M. S.O., M. A. M. Mabob (2017). Survey of the most common insect species on some foraging crops of honeybees in Dakhla Oasis, New Valley, Governorate Egypt. J. Eco. Heal. Env., 5(1): 35-40.

Mohammad, S. A. M. and S. F. M. Hafez (2023). Ecological studies in insectpests and their associated predators on the Egyptian clover, *Trifolium alexandrinum* crop. Zagazig Journal of Agricultural Research (Egypt), 31 (2): 683-698.

Rakha, O. M. M. A. (2008). Studies on the natural enemies of the Egyptian alfalfa weevil. M. Sc. Thesis, Fac. Agric., Kafr El-Sheikh Univ., 95 pp.

Summers, C. G., D. G. Gilchist and R. F. Norris (1981). Integrated Pest Management for Alfalfa Hay University of Calif., Richmond, CA. Pub. 3312.

Tawfik, M. F. S., S. I. El-Sherif and A. H. El-Heneidy (1980). Insect faunaof Egyptian clover fields in the Giza region, Egypt. Bulletin of the Entomological Society of Egypt, 60:171-178.

Wagan, T. A., H. Hua and Z. A. Wagan (2015). Insect pests and natural. enemies associated with berseem (*Trifolium alexandrinum* L.) in cotton field. Journal of Biology, Agriculture and Healthcare, 5(3): 129-133. (21).

الملخص العربي

مدى ملائمة البرسيم المصري والبرسيم الحجازي كعوائل آمنة للأعداء الطبيعية في النظم الزراعية

 2 . أمانى عبدالحكيم خليفة 1 و عبدالكريم سليمان محمد بدوى

1 قسم المكافحة الحيوبة، معهد بحوث وقاية النبات، مركز البحوث الزراعية، مصر

2 قسم بحوث المحاصيل العلفية، معهد بحوث المحاصيل الحقلية، مركز البحوث الزراعية، الجيزة، مصر

البرسيم هو محصول العلف الرئيسي في مصر ، خاصة في فصل الشتاء. ويلعب دورا حيويا في استدامة النظام البيئي الزراعي، لأنه يزيد من خصوبة التربة عن طريق تثبيت النيتروجين الذى تحصل عليه البكتريا من الغلاف الجوي لتقوم بتثبيته في العقد البكتيرية في الجذور. ومن مميزات البرسيم أنه محصول صديق للبيئة لأنه لا يتعرض لأي مبيدات حشرية في معظم الأحيان. أجريت الدراسة الحالية بالمزرعة التجريبية بمحطة البحوث الزراعية بسخا خلال موسمي 2021/2020 و 2021/2021 خلال الفترة من نوفمبر إلى يونيو لحصر مفصليات الأرجل باستخدام شبكة جمع الحشرات على كل من البرسيم المصري والبرسيم الحجازي. وتم حصر الوفرة النسبية لتسعة أنواع من الأفات الحشرية في البرسيم. تم جمع سوسة ورق البرسيم بأعداد صغيرة (61.5 و 84.84%) من المجموع الكلى من إجمالي الأفات على البرسيم المصري والحجازي على التوالي. بينما سجلت سوسة جذور البرسيم بأعداد مرتفعة نسبيا بقيم 57.15 و 30.90% من إجمالي مجموع الحشرات الموجودة على البرسيم المصري والبرسيم الحجازي على التوالي. ومن ناحية أخرى، تم جمع 17 نوعا من الحشرات المفترسة. حيث سجلت بقة الأوريس تواجدا بنسبة 24.64 و 25.56بينما سجلت مجموعة مفترسات الى العيد 25.04 و 45.05 بينما سجلت مجموعة مفترسات الي العيد 45.07 و 45.05 بن المجموع الكلى للمفترسات على نوعي البرسيم على التوالي.

تمت مراقبة التطفل على التوالى على بيض سوسة ورق البرسيم بواسطة طفيل Anaphes تمت مراقبة التطفل 21.72 و17.92% في fusceipennis في الفترة من 23 مارس وحتى نهاية الموسم، حيث بلغت نسبة التطفل 21.72 و17.92% في الموسمين الأول والثاني على التوالي.