AL-Jeboori, K. D., M. Z. K. AL-Mharib, A. Q. Hamdan and A. H. Mahmood (2017). Effect of irrigation intervals and foliar of salicylic acid on growth and yield of potato. Iraq J. Agric. Sci., 48(1): 242.
Amanullah, M. M., S. Sekar and S. Vincent (2010). Plant growth substances in crop production,” A Review. Asian J. Pl. Sci., 9 (4):215-222.
A.O.A.C. (1992). Official methods of analysis of the Association of Official Analytical Chemistis, 15ᵀh Ed. Published by the Association of Official Analytical Chemists III. North Nineteenth suite 210 Arlington, Virginia 2220/U.S.A.
Arnon, D. I. (1956). Copper enzyme in isolated chloroplasts. Polyphendoxidase in beta vulgaris. Pl. physiol., 24: 1-15.
Awad, E. M. M. and S. A. A. Mansour (2007). Growth, yield and quality of potato as affected by some antioxidants. J. Agric. Sci. Mansoura Univ., 32 (8): 6661-6669.
Bhupinder, S., K. Usha (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Pl. Grow. Regul., 39: 137-141.
Boyer, J. S. (1982). Plant productivity and environment. Science, 218: 443-448. Doi: 10.1126/science. 218. 4571.443. (PubMed) (Cross ref.).76.
Bricker, B. (1991). MSTATC: A Micro Computer Program from the Design Management and Analysis of Agronomic Research Experiments. Michigan State Univ., USA.
Canakci, S. and O. Munzuroglu (2007). Effects of acetylsalicylic acid on germination, growth and chlorophyll amounts of cucumber (Cucumis sativus L.) seeds. Pak. J. Biol. Sci., 10 (17): 2930-2934.
Cerny, I., V. Pačuta, J. Feckova and J. Golian (2002). Effect of year and Atonik application on the selected sugar beet production and quality parameters. J C E A, 3 (1): 15-21.
Chapman, H. D. and P. F. Pratt (1978). Methods of analysis for soils, plants and waters. Univ. of California, Div. Agric. Sci., Priced publication.
Daneshmand, F., M. J. Arvin and K. M. Kalantari (2009). Effect of acetylsalicylic acid (aspirin) on salt and osmotic stress tolerance in Solanum bulbocastanum in vitro: enzymatic antioxidants. American-Eurasian J. Agric. and Environ. Sci., 6(1): 92-99.
Donnelly, D. J., W. K. Coleman and S. E. Coleman (2003). Potato microtuber production and performance: a review. Am. J. potato Res., 80(2): 103-115.
Duncan, D. B. (1965). Multiple range and multiple F-test. Biometrics. 11:1-42.
Ebida, A. I. A. and A. M. El-Gamal (1992). In vitro propagation and tuberization of potato (Solanum tuberosum L.). Alex. J. Agric. Res. 37 (1): 275-300.
Ebida, A. I. and C. Y. Hu (1993). In vitro morphogenetic responses and plant regeneration from pepper (Capsicum annuum L. cv. Early California Wonder) seedling explants. Pl. Cell rept., 13(2): 107-110.
El-Shraiy, A. M. and A. M. Hegazi (2010). Influence of JA and CPPU on growth, yield and α-amylase activity in potato plant (Solanum tuberosum L.). Aust. J. Basic & Appl. Sci., 4(2): 160-170.
El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Pl. Grow. Reg., 45: 215-224.
Estrada, R., P. Tovar and J. H Dodds (1986). Induction of in vitro tubers in a broad range of potato genotypes. Pl. Cell, Tiss. Org. Cult., 7: 3-10.
FAO (2016). Agricultural data FAOSTAT. Food and Agriculture Organization of the United Nations.
http://faostat.fao.org/
Flores-López, R., R. Martínez-Gutiérrez, H. A. López-Delgado, and M. Marín-Casimiro (2016). Periodic application of low concentrations of paclobutrazol and salicylic acid in potatoes in greenhouse. Revista mexicana de ciencias agrícolas, 7(5): 1143-1154.
Gomez, K. A., and A. A. Gomez (1984). “Statistical Procedures for Agricultural Research”. John Wiley and Sons, Inc., New York.pp:680.
Grown, B. (2012). Physiological role of salicylic acid in improving performance, yield and some biochemical aspects of sunflower plant grown under newly reclaimed sandy soil. Aust. J. of Basic and Appl. Sci., 6 (4): 82-89.
Gunes, A., A. M. Inal, F. Alpaslan, E. G. Eraslan and N. Cicek (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Pl. Physiol., 164: 728-736.
Hadi, M. R., G. R. Balali, S. M. R. Moosavi and F. Hossini (2014). The effect of salicylic acid on the reduction of potato virus Y damage in Solanum tuberosum. Iran. J. Pl. Biol., 6, 171-183.
Hussey, G. and N. J. Stacey (1984). Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Ann. Bot., 53: 565-578.
Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall, of India private Limited New Delhi, P. 498.
Kolachevskaya, O. O., V. V. Alekseeva, L. I. Sergeeva, E. B. Rukavtsova, I. A. Getman, D. Vreugdenhil and G. A. Romanov (2015). Expression of auxin synthesis gene tms1 under control of tuber‐specific promoter enhances potato tuberization in vitro. J. of integr. Pl. Biol., 57(9): 734-744.
Kolachevskaya, O. O., L. I. Sergeeva, K. Floková, I. A. Getman, S. N. Lomin, V. V. Alekseeva and G. A. Romanov (2017). Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones. Pl. Cell Repts, 36(3): 419-435.
Lahijani, A. M. J., M. Kafi, A. Nezami, J. Nabati and J. Erwin (2018). Effect of 6-Benzylaminopurine and Abscisic Acid on Gas Exchange, Biochemical Traits, and Minituber Production of Two Potato Cultivars (Solanum tuberosum L.). J. Agric. Sci. and Technol., 20 (1): 129-139.
Langille, A. R. and P. L. Forsline (1974). Influence of temperature and photoperiod on cytokinin pools in the potato (Solanum tuberosum L.) Plant Sci Letters, 2:189-191.
Liu, J. and C.H. Xie (2001). Correlation of cell division and cell expansion to potato microtuber growth in vitro. Pl. Cell Tiss. & Organ Cult., 67: 159-164
Lopez-Delgado, H. A., R. Martínez-Gutiérrez, M. E. Mora-Herrera and Y. Torres-Valdés (2018). Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying in Solanum tuberosum L. plants. Potato Res., 1-12.
Malik, C. P. and M. B. Singh (1980). Plant Enzymology and Histo-Enzymology- A text Manual, PP. 276- 277, Kalyani Publishers, New Delhi, India.
Mok, M. C., D. W. S. Mok, D. J. Armstrong, K. Shudo, Y. Isogai, T. Okamoto (1982a). Cytokinin activity of N-phenyl-N0-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry, 21:1509–1511.
Mok, M. C., D. W. S. Mok, J. E. Turner and C. V. Mujer (1987). Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. HortSci., 22: 1194-1197.
Mok, M. C., D. W. S. Mok, S. C. Dixon, D. J. Armstrong and G. Shaw. (1982b). Cytokinin structure–activity relationships and the metabolism of N6- (D2-isopentenyl) adenosine-8-14C in Phaseolus callus cultures. Pl. Physiol., 70:173–178;
Moran, R. and D. Porath (1980). Department of botany, The Geovge.S.Wise faculfy for life sciences, Tel Aviv university, Ramat Aviv, Isr. plant physiol., 65:478-479.
Njogu, M. K., G. K. Gathungu and P. M. Danie (2015). Comparative effects of foliar application of gibberellic acid and benzylaminopurine on seed potato tuber sprouting and yield of resultant plants. Am. J. Agric. and Forest., 3 (5): 192-201.
Palmer, C. E. and O. E. Smith (1970). Effect of kinetin on tuber formation on isolated stolons of (Solanum tuberosum L.) cultured in vitro. Pl. Cell, Physiol., 11: 303-14.
Palmer, C.E. and O.E. Smith (1969). Cytokinins and tuber initiation in the potato (Solanum tuberosum L.). Nature, 221:279-280.
Raskin, I. (1992). Role of salicylic acid in plants. Ann. Rev. Pl. Physiol. Pl. Mol. Biol., 2: 439-463.
Rodriguez-Falcon, M., J. Bou and S. Prat (2006). Seasonal control of tuberization in potato: conserved elements with the flowering response. Ann. Rev. Pl. Biol., 57: 151–180.
Romanov, G. A., N. P. Aksenova, T. N. Konstantinova, S. A. Golyanovskaya, J. Kossmann, and L. Willmitzer (2000). Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Pl. Grow. Reg., 32: 245-251.
Roosta, H., S. Vazirinasab and M. Raghami (2015). Effect of 6-Benzylaminopurine and Cycocel on Minituber Production in Two Potato Cultivars. Vitro. Iran. J. Hotr. Sci., 46(1): 141-156.
Rosin, F. M., J. K. Hart, H. Van Onckelen and D. J. Hannapel (2003). Suppression of vegetative MADS box gene of potato activates axillary meristem development. Pl. Physiol., 129: 175-180.
Roumeliotis, E., B. Kloosterman, M. Oortwijn, W. Kohlen, H. J. Bouwmeester and R. G. Visser (2012). The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J. Exp. Bot., 63:4539-4547.
Sánchez-Rojo, S., H. A. López-Delgado, M. E. Mora-Herrera, H. I. Almeyda-León, H. A. Zavaleta-Mancera and D. Espinosa-Victoria (2011). Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. Am. J. Potato Res., 88 (2): 175-183.
Sawicka, B., P. Barbaś and M. Dąbek-Gad (2011). The problem of weed infestation in conditions of applying the growth bioregulators and foliar fertilization in potato cultivation. Nauka Przyr. Technol., 5 (2): 9. (in Polish).
Shudo, K. (1994). Chemistry of phenylurea cytokinins. Mok, D. W. S.; Mok, M. C. Cytokinins-Chemistry, activity, and function. Boca Raton, FL: CRC Press; 35-42.
Singh, D., P. K. Chhonker and B. S. Dwivedi (2005). Manual on soil plant and water analysis. West Ville publishing house, New Delhi, pp. 200.
Snell, F.D. and C.T. Snell (1953). Colorimetric methods of analysis including some turbimetric and morphometric methods. D. Van Nastrod Comp. Inc., zew Jersy, Toronto, NY, London, vol. III. pp. 606
Spooner, D. M. and J. B. Bamberg (1994). Potato genetic resources: sources of resistance and systematics. Am. Potato J., 71(5): 325-337.
Staden, J. and G. G. Dimalla (1976). Endogenous cytokinins and tuberization in the potato (Solanum tuberosum L.). Ann. Bot., 40:1117-1119.
Szepesi, A., J. Csiszar, S. Bajkan, K. Gemes, F. Horvath, L. Erdei, A.K. Deer, M. L. Simon and I. Tari (2005). Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biologica Szegediensis, 49 (1-2): 123-125.
Takahashi, S., K. Shudo, T. Okamoto, K. Yamada, Y. Isogai (1978). Cytokinin activity of N-phenyl-N0-(4-pyridyl) urea derivatives. Phytochemistry 17:1201-1207.
Te-chato, S. and M. Lim (2000).Improvement of mangosteen micropropagation through meristematic nodular callus formation from in vitro-derived leaf explants. Sci. Hortic., 86: 291-298.
Vicente, R. M. and J. Plasencia (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot., 62(10): 3321-3338.
Wang, L. J., S. J. Chen, W. F. Kong, S. H. Liu and D. D. Archibold (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest. Biol. Technol., 41:244-25.
Wierzbowska, J., B. Cwalina-Ambroziak, M. Glosek- Sobieraj and S. Sienkiewicz (2015). Effect of biostimulators on yield and selected chemical properties of potato tubers. J. Elem., 20(3): 757-768.
Wurr, D. C. E., J.R. Fellows, J. M. Akehurst, A. J. Hambidge and J. R. Lynn (2001). The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development. J. Agric. Sci. 136 (1): 55-63.
Yildirim, E., M. Turan and I. Guvenc (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. J. Pl. Nutri., 31: 593–612.
Zhang, G. F. and K. Z. Chang (2010). Introduction on the Applied Research of CPPU [J]. Enterprise Sci. & Techn. & Devel., 23: 22-24.