• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of the Advances in Agricultural Researches
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 30 (2025)
Issue Issue 2
Issue Issue 1
Volume Volume 29 (2024)
Volume Volume 28 (2023)
Volume Volume 27 (2022)
Volume Volume 26 (2021)
Volume Volume 25 (2020)
Volume Volume 24 (2019)
Volume Volume 23 (2018)
Volume Volume 22 (2017)
Volume Volume 21 (2016)
Volume Volume 20 (2015)
Volume Volume 19 (2014)
A.M.El, M., H. A., A., A.M., A., H.M., E. (2025). Estimation of Combining Ability for Some Yellow Maize Inbred Lines Using Line × Tester. Journal of the Advances in Agricultural Researches, 30(1), 185-192. doi: 10.21608/jalexu.2025.371041.1262
Mohamed, A.M.El; Aboyousef, H. A.; Abu Shosha A.M.; El-Shahed H.M.. "Estimation of Combining Ability for Some Yellow Maize Inbred Lines Using Line × Tester". Journal of the Advances in Agricultural Researches, 30, 1, 2025, 185-192. doi: 10.21608/jalexu.2025.371041.1262
A.M.El, M., H. A., A., A.M., A., H.M., E. (2025). 'Estimation of Combining Ability for Some Yellow Maize Inbred Lines Using Line × Tester', Journal of the Advances in Agricultural Researches, 30(1), pp. 185-192. doi: 10.21608/jalexu.2025.371041.1262
A.M.El, M., H. A., A., A.M., A., H.M., E. Estimation of Combining Ability for Some Yellow Maize Inbred Lines Using Line × Tester. Journal of the Advances in Agricultural Researches, 2025; 30(1): 185-192. doi: 10.21608/jalexu.2025.371041.1262

Estimation of Combining Ability for Some Yellow Maize Inbred Lines Using Line × Tester

Article 13, Volume 30, Issue 1, March 2025, Page 185-192  XML PDF (416.02 K)
Document Type: Research papers
DOI: 10.21608/jalexu.2025.371041.1262
View on SCiNiTO View on SCiNiTO
Authors
Mohamed, A.M.El1; Aboyousef, H. A.2; Abu Shosha A.M.2; El-Shahed H.M.2
1Agronomy Department, Faculty of Agricultural, Minia University, El-Minia, 61519, Egypt.
2Maize Research Department, Field Crops Research Institute, ARC, Egypt.
Abstract
Thirteen yellow maize inbred lines were topcrossed with three testers. i.e. inbred lines Gz.658, Mall.5035 and Gm.6052 during 2023 season at Sids Agric. Res. Station. The resulting 39 crosses along with two commercial check hybrids (SC.168 and SC.3444) were evaluated in yield trials using randomized complete block design with three replications at Sakha, Gemmeiza and Sids Agric. Res. Stationsin 2024 growing season to study the combining ability of these inbred lines and identify the superior crosses compared to commercial crosses. Data were recorded for days to 50% silking, plant height, ear height, ear length, ear diameter and grain yield. The results showed that variances due to locations, lines (L), tester (T) and the interaction (L x T) were significant or highly significant for all studied traits except for ear diameter of lines, ear length and grain yield of testers. The interactions between Lx Loc., T x Loc. and L x Tx Loc. were significant or highly significant for most studied traits. The magnitude of δ2SCA for all studied traits was larger than δ2GCA. The best inbred lines for GCA effects were L11 and L13 for grain yield and ear length, L3 and L7  for earliness, plant height and ear height. Elven crosses showed desirable SCA effects for grain yield. Four crosses ;(L9 x Mall 5053),(L13 x Gz 658),(L13 x Mall 5053) and (L13x Gm. 6052) were  significant out yield than the best checks SC 3444.
Keywords
Zea mays L; additive gene effects; non-additive gene effects
Main Subjects
Agriculture-environment interactions
Full Text

INTRODUCTION

Maize (Zea mays L.) is an important cereal crop in Egypt, which plays an important role in human and animal nutrition. Developing a high yielding maize hybrid is based mainly a development of better inbred lines. Top crosses testing were used to evaluate new inbred lines for combining ability in maize breeding program. Davis (1927) was the first who suggested this method. Singh and Chaudhary (1985) found that line × tester analysis provides information about general and specific combining ability of parents and at the sometime is helpful in estimating various types of gene action. Khalil et al. (2016) found that the tester with the narrowest genetic based exhibited the highest genetic variation in test crosses for most of the studied traits. Venkatesh et al. (2001) andAkhi et al. (2018) suggested the use of an inbred line as a tester. While the use of a single cross as tester has been reported by Soliman et al. (2001) and Fan et al., (2009). Many investigators suggested that general combining ability (G.C.A) effects were relatively more important than specific combining ability (SCA) effects in inbred lines Abd El-Mottalb (2017) and El-Hosary (2020). While Mousa et al., (2021) found that the SCA effects were more important than GCA effects in the inheritance of grain yield.

The main objectives of this study were:

(1)  To estimate general and specific combining ability of inbred lines for grain yield and some other traits.

(2)  To identify the most superior lines and top crosses for their use in hybrid maize breeding programs.

 

MATERIALS AND METHODS

The experiment were carried out in the summer seasons 2023 and 2024 at Sakha, Gemmeiza and Sids Agricultural Research Stations. In 2023 season the three inbred lines Gz.658, Mall.5035 and Gm.6052 were used as testers and crossed with thirteen female parents according to line × tester design to produce 39 crosses. The resulting 39 crosses and two checks; SC.168 and SC.3444 were evaluated at three locations; Sakha, Gemmeiza and Sids Agricultural Research Stations in 2024. The experimental design was a randomized complete block design (RCBD) with three replications. Each hybrid was grown in one row, 6 meter long, 80 cm apart and 25 cm between hills, and one plant were left per hill.Data were recorded on; days to 50% silking, plant height (cm), ear height (cm), ear length (cm), ear diameter (cm) and grain yield (ardab/fed) adjusted to 15.5% grains moisture content.Bartlett's test has been done for the means squares of the three locations errors. Homogeneity was found and therefore, the Statistical analysis of the combined data across three locations was performed according to Snedecor and Cochran (1980).Combining ability analysis was computed according to Kempthorne (1957).

 

RESULTS AND DISCUSSION

Combined analysis of variance across three locations of 39 crosses for the studied traits is presented in Table (1). The results showed that highly significant differences between the three locations (Loc.) for all studied traits indicating that the three locations differed from each other in their environmental conditions. These findings were congruent with the results obtained by Abd El-Azeem (2011), Abd El-Mottalb (2014), Tesfaye et al. (2019), Ibrahim et al. (2021), Ismail et al. (2022), Abd El-Latif et al. (2023), El-Gonemy et al. (2023), Hamada et al. (2024) and Ismail et al. (2024).

 


 

Table (1).  Analysis of variances for days to 50% silking, plant height, ear height, ear length, ear diameter and grain yield traits under cross three locations.


S. O. V

df

Days to 50%

silking

Plant height

(cm)

Ear height

(cm)

Ear length

(cm)

Ear diameter

(cm)

Grain yield

(ardab/fed)

Location  (Loc)

2

586.69**

243463.91**

96892.52**

664.52**

10.05**

4883.50**

Rep/ Loc.

6

19.05

2339.15

1937.30

13.84

0.19

47.86

Genotype  (G)

40

15.64**

1218.20**

958.61**

6.00**

0.10*

85.50**

G × Loc

80

4.26

309.18*

343.29**

3.09

0.05

29.86**

Error

240

2.16

132.39

99.88

3.35

0.06

6.13

CV. %

2.33

4.51

6.95

9.91

5.35

11.38

*,** significant at 0.05 and 0.01 level of probability , respectively


Mean squares of genotypes (G) and their interaction with locations (G x loc) were significant or highly significant for all studied traits except for days to 50% silking, ear length, ear diameter of G. × loc. meaning that the genotypes were differ among them and influenced by change locations. Mean squares due to lines (L), tester (T), line × tester (LxT) and their interaction with locations are shown in Table (2).Mean squares due to lines (L) and tester (T) and their interaction (L x T) were significant or highly significant for all studied traits except ear diameter for lines, ear length and grain yield for testers,except ear length, for (L x T), indicating that lines differed in their order of performance in crosses with each of the testers. These results are in agreement with that those obtained by  Ibrahim et al. (2012), Abd El-Mottalb (2014), Murtadha et al. (2018), Abd El-Mottalb (2017), Gamea (2020), Abu shosha et al. (2020), Ibrahim et al. (2021), Alsebaey (2021), and Ismail et al. (2024). Mean squares due to lines × locations (L x loc.)were highly significant for all studied traits except ear length and ear diameter,meanwhile testers × locations (T x loc.) was highly for ear height and grain yield and significant for plant height while lines × testers × locations (L x T x loc.) was highly significant for plant height, ear height and grain yield. These results are in agreement with these reported by Abu Shosha et al. (2020), Alsebaey (2021) and Ismail (2024).

 


 

Variance components:


Table (2). Mean squares due to lines, testers, and lines × testers for six traits and their interaction with location for six studied traits.


S. O. V

df

Days to 50%

silking

Plant height

(cm)

Ear height

(cm)

Ear length

(cm)

Ear diameter

(cm)

Grain yield

(ardab/fed)

Crosses  (C)

38

15.63**

1255.57**

1001.05**

5.23**

0.10*

88.81**

Lines (L)

12

19.46**

1976.11**

1773.86**

7.79*

0.05

107.63**

Testers  (T)

2

28.86**

2398.93**

2329.28**

2.43

0.29**

14.39

L × T

24

12.61**

800.02**

503.96**

4.18

0.10*

85.60**

C × Loc

76

4.18**

312.31**

316.22**

1.94

0.05

30.67**

L × Loc

24

6.50**

499.53**

466.08**

1.75

0.04

35.35**

T × Loc

4

3.92

388.75*

1090.49**

0.35

0.05

38.10**

L × T ×Loc

48

3.04

212.32**

176.77**

2.17

0.05

27.71**

Error

228

2.16

129.65

102.30

2.31

0.06

6.34

K2 GCA

0.30

28.58

27.07

0.03

-0.001

0.67

K2 SCA

1.16

74.48

44.62

0.20

0.004

8.81

K2 GCA ×Loc

0.13

13.10

28.16

-0.05

0.000

1.27

K2 SCA ×Loc

0.29

27.56

24.82

-0.05

-0.002

7.12

*,** significant at 0.05 and 0.01 level of probability , respectively.


Table (2). Shows the estimates of combining ability variances k2GCA, k2SCA and their interactions for all traits with locations, the results revealed that values of SCA were larger than those of K2GCA for all traits indicating that the non-additive gene effects were more important that additive in the inheritance of all traits. Furthermore, the magnitude of the interaction variances of K2SCA × location interaction was greater than those of K2GCA × location for all studied traits except for ear height and ear diameter indicating that the non-additive gene action interacted more with the environmental conditions than the additive component of gene actions for these traits. These results are in agreement with the findings of several investigations who reported that specific combining ability variances were more sensitive to environmental changes than general combining ability variances Sadek et al. (2000), El-Zeir (2000), Gamea(2015), Gamea (2020), Abu Shosha et al. (2020), Ibrahim et al. (2021) and Ismail et al. (2024).

 


 

Mean performance:

Table (3). Mean performance of thirty nine crosses and two checks for days to 50%silking, plant height, ear height, ear length, ear diameter and grain yield traits across three locations.

Cross

Days to 50%

silking

Plant height

(cm)

Ear height

(cm)

Ear length

(cm)

Ear diameter

(cm)

Grain yield

(ardab/fed)

L1 × Gz.658

64.11

265.22

152.89

18.91

4.49

22.76

L1 × Mall. 5035

64.33

263.00

148.00

17.78

4.33

20.41

L1 × Gm.6052

63.67

272.22

155.56

18.42

4.62

24.43

L2 × Gz.658

63.33

254.00

156.22

18.56

4.53

19.49

L2 × Mall.5035

63.56

255.11

138.00

18.60

4.60

22.33

L2 × Gm.6052

63.56

271.78

150.89

18.67

4.71

22.77

L3 × Gz.658

61.00

234.33

130.89

17.56

4.44

17.29

L3 × Mall.5035

62.33

248.00

129.44

19.07

4.53

20.56

L3 × Gm.6052

62.33

254.78

137.22

19.96

4.64

21.80

L4 × Gz.658

60.11

229.89

127.67

17.76

4.51

19.15

L4 × Mall.5035

64.44

246.67

135.00

17.87

4.64

18.70

L4 × Gm.6052

62.67

263.33

142.11

18.29

4.64

24.56

L5 × Gz.658

62.78

246.56

136.56

18.51

4.62

24.00

L5 × Mall. 5035

63.78

245.78

127.33

18.96

4.71

21.04

L5 × Gm.6052

62.78

257.78

138.33

18.47

4.56

21.76

L6 × Gz.658

63.11

250.56

141.00

19.16

4.76

20.98

L6 × Mall.5035

64.00

242.33

133.89

18.78

4.47

20.36

L6 × Gm.6052

63.00

256.22

140.56

18.38

4.60

15.58

L7 × Gz.658

63.44

248.22

146.11

18.93

4.62

18.42

L7 × Mall.5035

59.67

229.89

122.00

17.60

4.49

19.07

L7 × Gm.6052

60.56

257.67

149.56

16.91

4.69

22.60

L8 × Gz.658

61.67

254.44

148.33

19.42

4.67

22.91

L8 × Mall.5035

62.11

260.56

141.67

18.13

4.44

19.19

L8 × Gm.6052

61.89

264.33

152.56

18.38

4.71

25.46

L9 × Gz.658

61.78

247.11

137.11

17.13

4.53

15.59

L9 × Mall5035

63.56

263.33

147.44

18.67

4.42

27.32

L9 × Gm.6052

62.56

271.22

158.33

18.18

4.69

22.78

L10 × Gz.658

64.44

267.67

157.89

18.69

4.62

23.29

L10 × Mall.5035

64.56

251.33

140.33

18.51

4.69

25.27

L10 × Gm.6052

60.44

236.56

129.78

17.64

4.42

15.53

L11 × Gz.658

64.67

262.56

158.56

19.80

4.58

25.03

L11 × Mall.5035

63.67

261.67

146.00

19.24

4.49

24.01

L11 × Gm.6052

63.56

268.11

157.33

18.82

4.64

23.62

L12 × Gz.658

64.11

246.56

146.11

18.29

4.53

21.51

L12 × Mall.5035

63.33

254.11

140.33

17.84

4.56

19.65

L12 × Gm.6052

61.00

236.33

130.33

16.56

4.47

17.39

L13 × Gz.658

64.00

269.11

161.00

19.40

4.62

26.08

L13 × Mall.5035

64.00

263.33

151.67

18.78

4.49

26.38

L13 × Gm.6052

62.56

272.00

160.22

19.73

4.76

26.22

SC.168

64.00

258.11

147.78

17.33

4.73

23.21

SC.3444

64.44

265.33

139.56

20.29

4.62

23.38

LSD 0.05

1.38

10.79

9.38

1.72

0.23

2.32

LSD 0.01

1.79

13.99

12.16

2.23

0.30

3.01

 

Mean performance of the 39 crosses and two checks hybrids for all studied traits are presented in Table (3), for days to 50% silking, fourteen hybrids were significantly earlier than the earliest check Sc.168 (64.0 days). The earliest cross among them was (L7 × Mall.5035). Plant height ranged from 229.89 cm for the crosses (L4 × Gz.658), (L7 × Mall.5035) to 272.22 cm for the cross (L1 × Gm.6052) out of the 39 crosses, eleven crosses were significantly shorter than the check hybrid Sc.168. Ear height ranged from 122 cm for the cross (L7 × Mall.5035) to 161 cm for the cross (L13 × Gz.658). Five crosses were significantly lower ear placement than the check hybrid Sc. 3444 for ear length, all crosses werelower for ear length than the better check hybrid Sc.3444 for ear diameter, two crosses were not significant surpassed than the best check Sc.168 for grain yield, four crosses; (L9 × Mall.5035), (L13 × Gz.658), (L13 × Mall.5035) and (L13 × Gm.6052) were significant out-yielded the best check hybrid Sc.3444. Meanwhile, eight crossesnamely (L1 × Gm.6052), (L4 × Gm.6052), (L5 × Gz.658), (L8 × Gm.6052), (L10 × Mall.5035), (L11 × Gz.658), (L11 × Mall.5035) and (L11 × Gm.6052) were not significant out yielded than the best check SC.3444. These crosses are recommended for the further evaluation to accurately identify the promising crosses as future commercial hybrids for high yielding.


 

General combining ability effects.

Table (4).General combining ability (GCA) effects of the 13 inbred lines and 3 testers for grain yield and the other studied traits across three locations.

No.

Lines

Days to 50%

silking

Plant height

(cm)

Ear height

(cm)

Ear length (cm)

Ear diameter (cm)

Grain yield

(ardab/fed)

1

L1

1.15**

11.85**

8.45**

-0.10

-0.10*

0.86

2

L2

0.60*

5.33*

4.67*

0.14

0.04

-0.14

3

L3

-0.99**

-9.26**

-11.18**

0.39

-0.04

-1.79**

4

L4

-0.48

-8.34**

-8.77*

-0.50

0.02

-0.87

5

L5

0.23

-4.93*

-9.62**

0.17

0.05

0.59

6

L6

0.49

-5.26*

-5.22**

0.30

0.03

-2.70**

7

L7

-1.66**

-9.71**

-4.48*

-0.66*

0.02

-1.64**

8

L8

-0.99**

4.81*

3.82

0.17

0.03

0.85

9

L9

-0.25

5.59**

3.93*

-0.48

-0.03

0.22

10

L10

0.26

-3.11

-1.03

-0.19

0.00

-0.31

11

L11

1.08**

9.15**

10.26**

0.82**

-0.01

2.55**

12

L12

-0.07

-9.30**

-4.77*

-0.91**

-0.06

-2.16**

13

L13

0.64*

13.18**

13.93**

0.83**

0.04

4.55**

Lsdgi

5%

0.56

4.36

3.87

0.58

0.09

0.96

1%

0.73

5.65

5.02

0.75

0.12

1.25

Lsd

gi-gj

5%

0.80

6.17

5.48

0.82

0.13

1.36

1%

1.03

8.00

7.10

1.07

0.17

1.77

Tester

1

Gz.658

0.08

-2.95**

2.48**

0.15

0.001

-0.40

2

Mall.5035

0.45**

-2.26*

-5.15**

-0.02

-0.05*

0.20

3

Gm.6052

-0.53**

5.21**

2.67**

-0.13

0.05*

0.21

Lsdgi

5%

0.27

2.09

1.86

0.28

0.04

0.46

1%

0.35

2.72

2.41

0.36

0.06

0.60

Lsd

gi -gj

5%

0.38

2.96

2.63

0.40

0.06

0.66

1%

0.50

3.84

3.41

0.51

0.08

0.85

 

General combining ability effects for parental inbred lines and three testers are presented in Table (4). Positive GCA effects are desirable for improvement of grain yield and yield components traits, while negative GCA effects are desirable when selecting for earliness, short plants and lower ear placement. For days to 50% silking three inbred lines L3, L7 and L8 and tester Gm.6052 exhibited negative and highly significant for GCA effects, indicating these inbred lines are considered the best combiner for earliness. For plant height and ear height six inbred lines L3, L4, L5, L6, L7 and L12 and tester Mall.5035 had significant and negative GCA effects toward shortness and lower ear placement. For ear length, two inbred lines L11 and L13 had significant and positive GCA effects. for ear diameter, the tester Gm.6052 exhibited significant and positive GCA effects. for grain yield, two inbred lines (L11 and L13) had significant and positive GCA effects. from above results the inbred lines which exhibited desirable GCA effects are recommended for plant breeding programs. These results are in agreement with other investigations Motawei et al. (2019), Abd El-Latif et al. (2020), Gamea (2020), Ibrahim et al. (2021), Emam and Mohamed (2021) and Ismail et al. (2024).



 

Specific combining ability effects.

Table (5). Specific combining ability effects of 39 top crosses for days to 50%silking, plant height, ear height, ear length, ear diameter and grain yield across three locations.

Cross

Days to 50%

silking

Plant height

(cm)

Ear height

(cm)

Ear length

(cm)

Ear diameter

(cm)

Grain yield

(ard/fed)

L1 × Gz.658

-0.01

1.36

-1.74

0.39

0.01

0.63

L1 × Mall. 5035

-0.15

-1.55

1.00

-0.57

-0.10

-2.32**

L1 × Gm.6052

0.16

0.19

0.74

0.18

0.09

1.69*

L2 × Gz.658

-0.23

-3.35

5.37

-0.21

-0.08

-1.64

L2 × Mall.5035

-0.38

-2.92

-5.22

0.01

0.04

0.61

L2 × Gm.6052

0.61

6.27

-0.15

0.19

0.05

1.03

L3 × Gz.658

-0.97*

-8.42*

-4.11

-1.46**

-0.10

-2.18**

L3 × Mall.5035

-0.01

4.56

2.08

0.23

0.04

0.48

L3 × Gm.6052

0.98*

3.86

2.03

1.23*

0.05

1.70*

L4 × Gz.658

-2.38**

-13.79**

-9.74**

-0.37

-0.09

-1.25

L4 × Mall.5035

1.59**

2.30

5.23

-0.08

0.09

-2.29**

L4 × Gm6052

0.79

11.49**

4.52

0.45

0.00

3.54**

L5 × Gz.658

-0.42

-0.53

0.00

-0.29

-0.01

2.13*

L5 × Mall. 5035

0.22

-1.99

-1.59

0.33

0.13

-1.42

L5 × Gm.6052

0.20

2.53

1.59

-0.05

-0.12

-0.71

L6 × Gz.658

-0.34

3.80

0.04

0.23

0.15

2.41**

L6 × Mall.5035

0.18

-5.11

0.56

0.03

-0.09

1.19

L6 × Gm.6052

0.16

1.30

-0.60

-0.26

-0.06

-3.61**

L7 × Gz.658

2.14**

5.91

4.41

0.96

0.02

-1.20

L7 × Mall.5035

-2.01**

-13.11**

-12.07**

-0.19

-0.06

-1.15

L7 × Gm.6052

-0.13

7.19

7.66*

-0.77

0.04

2.36**

L8 × Gz.658

-0.30

-2.38

-1.67

0.62

0.06

0.80

L8 × Mall.5035

-0.23

3.04

-0.70

-0.49

-0.11

-3.53**

L8 × Gm.6052

0.53

-0.66

2.37

-0.14

0.05

2.73**

L9 × Gz.658

-0.93

-10.50**

-13.00**

-1.01*

-0.02

-5.90**

L9 × Mall.5035

0.48

5.04

4.97

0.70

-0.08

5.23**

L9 × Gm.6052

0.46

5.45

8.03*

0.32

0.09

0.68

L10 × Gz.658

1.21*

18.76**

12.74**

0.25

0.04

2.33**

L10 × Mall.5035

0.96

1.75

2.82

0.25

0.16*

3.72**

L10 × Gm.6052

-2.17**

-20.51**

-15.56**

-0.51

-0.20*

-6.05**

L11 × Gz.658

0.62

1.39

2.11

0.36

0.01

1.21

L11 × Mall.5035

-0.75

-0.18

-2.81

-0.02

-0.03

-0.41

L11 × Gm.6052

0.13

-1.21

0.70

-0.34

0.03

-0.81

L12 × Gz.658

1.21*

3.84

4.70

0.57

0.01

2.40**

L12 × Mall.5035

0.07

10.71**

6.56

0.30

0.09

-0.06

L12 × Gm.6052

-1.28**

-14.55**

-11.26**

-0.88

-0.10

-2.34**

L13 × Gz.658

0.40

3.91

0.89

-0.06

0.00

0.26

L13 × Mall.5035

0.03

-2.55

-0.81

-0.50

-0.08

-0.04

L13 × Gm.6052

-0.43

-1.36

-0.08

0.56

0.08

-0.22

   LSD sij 5%

0.97

7.55

6.71

1.01

0.16

1.67

   LSD sij 1%

1.26

9.79

8.70

1.31

0.21

2.17

LSD  Sij-Sik 5%

1.38

10.68

9.49

1.43

0.23

2.36

LSD  Sij-Sik %1

1.79

13.85

12.30

1.85

0.30

3.06

 

 

Specific combining ability effects of the inbred lines as expressed by their crosses for all traits are presented in Table (5), results showed that five crosses; (L3 × Gz.658), (L4 × Gz.658), (L7 × Mall.5035), (L10 × Gm.6052) and (L12 × Gm.6052) exhibited significant and negative SCA effects for days to 50% silking. For plant height, six crosses (L3 × Gz.658), (L4 × Gz.658), (L7 × Mall.5035), (L9 × Gz.658), (L10 × Gm.6052) and (L12 × Gm.6052) exhibited negative and significant SCA effects. For ear height five crosses(L4 × Gz.658), (L7 × Mall.5035), (L9 × Gz.658), (L10 × Gm.6052) and (L12 × Gm.6052) exhibited negative and significant SCA effects. The desirable cross for SCA effects were one cross (L3 × Gm.6052) for ear length, and one cross (L10 × Mall.5035) for ear diameter and eleven crosses for grain yield; (L1 × Gm.6052), (L3 × Gm.6052), (L4 × Gm.6052), (L5 × Gz.658), (L6 × Gz.658), (L7 × Gm.6052), (L8 × Gm.6052), (L9 × Mall.5035), (L10 × Gz.658), (L10 × Mall.5035) and (L12 × Gz.658).

 

CONCLUSION

The promise parental lines were L11 and L13 which possessed the best SCA effects for grain yield and could be of great value in breeding program for improving grain yield. More over four topcrosses (L9 × Mall.5035), (L13 × Gz.658), (L13 × Mall.5035) and (L13 × Gm.6052) considered superior and desirable crosses which significantly out yielded than commercial hybrid SC.3444 and could be considered of good crosses for maize breeding program.

 

الملخص العربي

 

تقدير القدرة الائتلافية لبعض السلالات الصفراء من الذرة الشامية باستخدام

تحليل السلالة في الكشاف

 

أحمد محمد المهدي محمد1, هشام عبدالحميد ابويوسف2,أحمد مصطفي ابوشوشه2, هيثم مصطفي الشاهد2

1-     قسم المحاصيل, كلية الزراعة, جامعة المنيا, المنيا, مصر

2-     قسم بحوث الذرة الشامية, معهد بحوث المحاصيل الحقلية, مركز البحوث الزراعية, مصر


 

تم إجراء التهجينات بين 13 سلاله صفراء من الذرة الشامية مع ثلاث كشافات السلالةجيزة 658 والسلالة ملوي 5035 والسلالة جميزه 6052 في موسم 2023 بمحطة البحوث الزراعية بسدس. تم تقييم الـ 39 هجين الناتجة من التهجينات مع إثنان من هجن المقارنة هـ ف 168 وهـ ف 3444 في تصميم القطاعات الكاملةالعشوائية في ثلاث مكرراتبمحطات البحوث الزراعية سخا والجميزة وسدس حيث تم تقدير القدرة العامةوالخاصة علي التآلف ودراسة التفاعل البيئي لصفات عدد الايام حتي ظهور حراير50% من النباتات وارتفاع النبات وارتفاع الكوز وطول وقطر الكوز والمحصول (أردب / فدان). أظهر نتائج التحليل المشترك أن هناك فروق معنويه أو عالية المعنوية بين كل من السلالات والكشافات لجميع الصفات تحت الدراسة فيما عدا قطر الكوز بالنسبة للسلالات وطول الكوز والمحصول بالنسبة للكشافات. كما أظهرت النتائج أن هناك فروق معنويه أو عالية المعنوية بين السلالات × الكشافات لكل الصفات تحت الدراسة فيما عدا طول الكوز. بينما كان التفاعل بين السلالات مع المواقع عالي المعنوية لكل الصفات تحت الدراسة فيما عدا طول وقطر الكوز. بينما كان التفاعل بين الكشافات مع الجهات معنوي أو عالي المعنوية لصفات ارتفاع النبات والكوز وصفة المحصول. بينما كان التفاعل بين السلالات والكشافات والمواقع عالي المعنوية لصفات ارتفاع النبات والكوز وصفة المحصول. كما أظهرت النتائج أن تباين القدرة الخاصة علي التآلف كان أعلي من تباين القدرةالعامة لكل الصفات تحت الدراسة. كما أظهرت النتائج أن السلالة رقم 11 والسلالة رقم 13 تفوقت معنويا في قدرتها العامة علي التآلف ولذلك توصي هذه الدراسةباستخدام هذه السلالات في برنامج التربية للمحصول العالي. كما أظهرت النتائج أن عشره هجن قميه معنويه موجبه للقدرة الخاصة علي التآلف لصفه المحصول وهم السلالة الكشافة جيزة 658 مع كل من السلالة رقم 5, 6, 10, 12 والسلالةالكشافة جميزه 6052 مع كل من السلالة رقم 1, 4, 7, 8 والسلالة الكشافة ملوي 5035 مع كل من السلالة رقم 9, 10.  كما أظهرت النتائج أن هناك أربع هجن أظهرت تفوق معنوي علي أعلي هجن المقارنة هـ ف 3444 وهم السلالة الكشافة ملوي 5035 مع السلالة رقم 9, 13 والسلالةالكشافةجيزة 658 مع السلالة رقم 13 والسلالةالكشافة جميزه 6052 مع السلالة رقم 13 وعلى ذلك نوصى بإدخال هذه الهجن في برامج تربية الذرة الشامية.

 

References
Abd El-Azeem M.E.M. (2011). Evaluation of some new white maize inbred lines using line x tester analysis. Egypt. J. Plant Breed. 15 (5) : 99 -112.

Abd El-Latif, M. S., Galal, Y. A., and M. S. Kotp, (2023).Combining ability, heterotic grouping, correlation and path coefficient in maize. Egypt. J. Plant Breed, 27(2): 203-223.‏

Abd El-Latif, M.S., S.M. Abo El-Haress, M.A.A Hassan and Abd-Elaziz, M.A.A. (2020).Evaluation and classification of two sets of yellow maize inbred lines by line × tester analysis. Egypt. J. Plant Breed. 24: 65-79.

Abd El-Mottalb, A.A.  (2017). Combining ability effects of some new yellow maize inbred lines. Menoufia J. Plant Prod.2 : 349 – 358

Abd El-Mottalb, A.A. (2014). Evaluation of some yellow maize inbred lines for combining ability by using topcrosses. Egypt J. of Appl. Sci. 29 : 79–89

Abu shosha, A.M., El-Shahed, H.M., and Darwich, M.M.B. (2020). Utilization of line x tester analysis for estimating combining ability for some new yellow maize inbred lines. Egypt J. Plant Breed. 24: 535-547.

Akhi AH, Ahmed SA, Karim ANMS, Rohman MM. (2018). Genetic control observation for yield and morphological traits in maize (Zea mays L.) inbred lines. Advances in Plants & Agriculture Research.;8(5): 371-378.

Alsebaey, R.H.A. (2021). Combining ability and heterotic groups for some new whit maize inbred lines. Journal of Plant Production, 12: 895-898.‏

Davis, R.L. (1927).Report of the plant breeding. Ann. Rep., Puerto Rico Agric. Exp. Stat., P: 14-15

El-Ghonemy, M.A., Aboyousef, H.A., Shosha, A., EL-Shahed, H.M. and Shalof, M.S. (2023). Combining ability, main performance and superiority percentages of maize (Zea mays L.) inbred lines using line x testers analysis. Egyptian J. of Agric. R. 101 :939-951.‏

El-Hosary AAA.(2020). Estimation of genetic variability using line x tester technic in yellow maize and stability analysis for superior hybrids using different stability procedures. Journal of Plant Production, Mansoura University.;11(9):847-854.

El-Zeir, F.A., Amer, E.A., Abd El-Aziz, A.A. and Mahmoud, A.A. (2000).Combining ability of new maize inbred lines and type of gene action using top crosses of maize. Egypt. J. Appl. Sci. 15: 116-128.

El-Zeir, F.A.A. (1999).Evaluation of some new inbred lines for combining ability using top crosses in maize (Zea mays L).Minufiya Agric. Res. 24:1609-1620.

Emam, M. A. and Mohamed, H.A. (2021).Combining ability variation of some white maize inbred lines via line x tester analysis under ismailia and mallawy locations. J. of Plant Production Sci. 10: 67-73.‏

Fan, X.M., Y.M. Zhang, W.H. Yao, H.M. Chen, J. Tan, C.X. Xu, X.L. Han, L.M. Luo and M.S. Kang (2009). Classifying maize inbred lines into heterotic groups using a factorial mating design. Agron. J. 101: 106-112

Gamea, H.A.A. (2015). Estimate of combining ability of new yellow maize inbred lines using top crosses. Egypt J. Agric. Res. 93: 287-298.

Gamea, H.A.A. (2020). Mean Performance, Type of Gene Action, Combining Ability and Superiority Percentage of some New White Maize Inbred Lines in Top Crosses. J. Plant Production, sci. 11: 319-323.

Hamada, M. S., Aly, R. S. H. and Zaater, M. M. (2024). Estimation of genetic parameters, combining ability and heterotic groups of new yellow maize inbred lines using line x tester model across two locations. J. of Agric. Chemistry and Biotechnology, 15: 47-52.‏

Ibrahim, Kh.A.M.,Sai A.A. and Kamar M.M. (2021). Evaluation and classification of yellow maize inbred lines using line x tester analysis across two locations. .Plant Prod. Mansoura Univ. 12: 605-611.

Ibrahim, M.H.A., El-Ghonemy, M.A. and Abd El-Mottalb, A.A. (2012). Evaluation of fifteen yellow maize inbred lines for combining ability by their top crosses. Egypt. J. Plant Breed. 16 : 225-236.

Ismail, M.R., Aboyousef, H.A., Mostafa, A.K., Afife, A.A.M. and Shalof, M.S. (2024).Assessment of combining ability and mean performance of yield and its contributing traits in maize through line × tester analysis.‏ Egypt. J. Plant Breed. 28:117– 133

Ismail, M.R., Galal, Y.A., Kotp, M.S. and El-Shahed, H.M (2022).Assessment of combining ability and heterotic groups of new white maize inbred lines. Egypt J. of Plant Bree.26:267– 278.

Kempthorne, O (1957).An Introduction to Genetic Statistics. John Wiley and Sons Inc., NY, USA.

Khalil MAG, Abo El-Hares SM, Hassan MAA and Amer EA. (2016). Combining ability of new yellow maize inbred lines using line x tester mating design. Journal of Agriculture Research Kafr El-Sheikh University. 42(4):470-479.

Motawei, A.A., Mosa, H.E., Khalil, M.A.G., Darwish, M.M.B. and Mohamed H.A.A. (2019).Combining ability and heterotic grouping of two sets of new maize inbred lines.Egypt J. Plant Bree.23: 667- 679.

MousaSTh M, Mohamed HAA, Aly RSH, Darwish HA. (2021). Combining ability of white maize inbred lines via line x tester analysis. Journal of Plant Production, Mansoura University.12(2):109-113.

Murtadha, M., Ariyo, O. and Alghamdi, S. (2018). Analysis of combining ability over environments in diallel crosses of maize (Zea mays). J. of the, Saudi Society of Agric. Sci.17: 69-78.

Sadek, S.E., Gado, H.E. and Soliman, M.S.M. (2000).Combining ability and type of gene action for maize grain yield and other attributes. J. Agric. Sci. Mansoura Univ. 25: 2491-2502.

Singh, R.K. and Chaudhary, B.D. (1985).Biometrical Methods in Quantitative Genetic Analysis.Kalyani Publishers.New Delhi, 3rd Ed., P.39-68.

Snedecor, G.W. and Cochran, W.G. (1980).Statistical Methods. 7th Ed Iowa State University Press, Ames, Iowa, USA.

Soliman, M.S.M., Mahmoud, Afaf, A.A., Gabr, A.I. and Soliman, F.H. (2001). Utilization of narrow base testers for evaluating combining ability of newly developed yellow maize inbred lined (Zea mays L.). Egypt J. Plant Breed. 5:61-76.

Tesfaye, D., Abakemal, D. and Habte, E. (2019). Combining ability of highland adapted double haploid maize inbred lines using line x tester mating design. East African J. of Sci. 13: 121-134.

Venkatesh S, Singh NN, Gupta NP. (2001). Early generation identification and utilization of  potential inbred lines in modified single cross hybrids of maize (Zea mays L.). Indian Journal of Genetics.;61(3): 213–217.

Statistics
Article View: 64
PDF Download: 54
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.