Tayeb, E., Saad, A., Abdelmageed, A., Al-Besaerawi, M. (2018). Microwave Radiation as an Eco-friendly Tool for Controlling the Red Flour Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae). Journal of the Advances in Agricultural Researches, 23(4), 584-599.
Elsaid Tayeb; Abdelfattah Saad; Ahmed Abdelfattah Abdelmageed; Muntaha Al-Besaerawi. "Microwave Radiation as an Eco-friendly Tool for Controlling the Red Flour Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae)". Journal of the Advances in Agricultural Researches, 23, 4, 2018, 584-599.
Tayeb, E., Saad, A., Abdelmageed, A., Al-Besaerawi, M. (2018). 'Microwave Radiation as an Eco-friendly Tool for Controlling the Red Flour Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae)', Journal of the Advances in Agricultural Researches, 23(4), pp. 584-599.
Tayeb, E., Saad, A., Abdelmageed, A., Al-Besaerawi, M. Microwave Radiation as an Eco-friendly Tool for Controlling the Red Flour Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae). Journal of the Advances in Agricultural Researches, 2018; 23(4): 584-599.
Microwave Radiation as an Eco-friendly Tool for Controlling the Red Flour Beetle Tribolium castaneum (Hbst.) (Coleoptera:Tenebrionidae)
The current investigation aimed to assay a non-traditional method to control the red flour beetle Tribolium castaneumwithout any changes on contents and quality of wheat grains they infest. Therefore, a household microwave system was used to assay the effect of microwave radiation on different developmental stages (larvae, male pupae, female pupae and unsexed adults) of the red flour beetle Tribolium castaneum (Hbst.), where all experiments were conducted at an exposure range of times of 3-20 s at power level of 800 W. Meanwhile, the effect of microwave radiation on treated wheat grain characters and germination was also investigated. The results showed that as the microwave exposure time increase, the mortality of different developmental stages of T. castaneum increased. The mortality of treated larvae of all ages (1-7, 7-14 and 14-21 days), male pupae, female pupae and adults were 100% at the power and exposure time of 800W and 20 s, respectively. The median lethal time (LT50) of exposure to microwave irradiation indicated that the adult stage (LT50= 8.951±0.114 s) was more tolerant to microwave irradiation than pupae (LT50= 4.015±0.0.230 s). The calculated percentage means of germination for the exposed grains to microwave radiation at 20, 15 and 10, decreased from 94.17% in the untreated control up to 40.83, 63.33 and 70.83 %, respectively. High degradation and aggregation of DNA of the red flour adult beetle were detected after the microwave treatment of 400W for 20 s. The results showed that there were 8 bands of esterases while the control pattern showed only 4 bands which prove that the adults increasing their enzymes activity as a way of protecting themselves from the produced radiation stress from the microwave. It could be concluded that the microwave (800 W)-treated grains or flour for 20 s can be stored free of different developmental stages of the red flour beetle and can be used only for consumption purposes. Because the germination of the treated grains was affected and rather reduced, while the composition of the grains (carbohydrates, fat, protein, ash, fiber and water content) was not significantly affected.
Abdelaal, A. A. A. andB. M. El-Dafrawy (2014). Effect of noionizing electromagnetic waves on some stored grain pests. J. Entomol., 11 (2): 102-108.
Andrews, A.T. (l981). Electrophoresis: Theory, Techniques and Biochemical and Clinical Application. Clarendon Press, Oxford, pp. 336.
AOAC (1990). Official methods of analysis of the Association of Official Analytical Chemists.15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
Barbosa, D. R. E. S., L. da S. Fontes, P. R. R. Silva, J. A. Neves, A. F. de Melo and A. B. E. Filho (2017). Microwave radiation to control Callosobruchus maculatus (Coleoptera: Chrysomelidae) larvae in cowpea cultivars. Austral. Entomol. Soci., 56: 70–74.
Bousquet,Y. (1990). Beetles associated with stored product in Canada. Canadian Government Publishing Centre, Ottawa: 189-192.
Brader, B., R. Lee, R. Plarre, W. Burkholder, G. B. Kitto, L. Polston, E. Dorneanu, J. Szabo, B. Mead, B. Rouse, D. Sullins and R. Denning (2002). A comparison of screening methods for insect contamination in wheat. J Stored Prod. Res., 38, 75-86.
Champ, B. R. and C. E. Dyte (1976). Report of the FAO global survey of pesticide susceptibility of stored grain pests (FAO Rome) FAO Plant Production and Protection series No. 5, pp 297.
Ciepielewska, D. and B. Kordan (2001). Natural peptide substances as a factor reducing the incidence of storage pests-short report. Polish J.Food Nut. Sci., 3(3): 47-50.
Collins, P. J. (2006). Resistance to chemical treatments in insect pests of stored grain and its management. In: Proc. 9th Inter.Working Conf. Stored- Product Protection, Lorini, I.; B. Bacaltchuk; H. Beckel; D. Deckers; E. Sundfeld; J. P. dos Santos; J.D. Biagi; J.C. Celaro; L. R. D. Faroni; A., Bortolini; M. R.Sartori; M. C. Elias; R. N. C. Guedes; R.G. da Fonseca and V.M. Scussel (Eds.), 15–18 October 2006, Campinas, Sao Paulo, Brazil. Brazilian Post Harvest Association, Campinas, Brazil, pp: 277–282.
Daglish, G. J. (2006). Opportunities and barriers to the adoption of potential new grain protectants and fumigants. In: Proc. 9th Inter.Working Conf. Stored- ProductProtection, I. Lorini, B. Bacaltchuk, H. Beckel, D. Deckers, E. Sundfeld, J.P. dos Santos, J.D. Biagi, J, C. Celaro, L.R. Faroni, O.F. Bortolini, M. R. Sartori, M. C. Elias, R. N. C. Guedes, R. G. da Fonseca and V. M. Scussel (Eds.), 15–18 October 2006, Campinas, Sao Paulo, Brazil. Brazilian Post Harvest Association, Campinas, Brazil, pp: 209–216.
Diraman, H. (2010). Effect of microwaves on technological and rheological properties of Suni-Bug (Eurygaster spp) damaged and undamaged wheat flour.Food Sci. Technol. Res., 16(4):313 – 318.
Doyle, J. J. and J. L. Doyle (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19: 5–11.
Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11:1-42.
EL-Metainy, A. Y., A.Y. Abou-Youssef and M. El-Hadad (1977). Starch degrading isozymes in Triticumn aestivum, Triticumn pyramidal and their interspecific hybrid. Egypt. J. Genet.Cytol., 6: 375-379.
Fang, G., S. Hammar and R. Grumet (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques, 13:52–56.
Finney, D. J. (1971). Probit Analysis, 3rd Edition, Cambridge University Press, Cambridge, U.K, pp 333.
Halverson, S. L., W. E. Burkholder, T. S. Bigelow, E. V. Nordheim and M. E. Misenheimer (1996). High-power microwave radiation as an alternative insect control method for stored products. J. Econ. Entomol., 89(6): 1638-1648.
Horwitz, W. (1970).Official methods of the association of analytical chemists, 11th ed. Association of analytical chemists, Washington, DC, U.S.A.
Johnson, J. A., S. Wang and J. Tang (2003). Thermal death kinetics of fifth-instar Plodia interpunctella ( Lepidoptera:Pyrolidae). J.Econ. Entomol., 96(2):519-524.
Kljajic, P. and I. Peric (2005). Resistance of stored-product insects to insecticides. (Rezistentnost skladisˇnih insekata prema insekticidima). Pesticide and Phytomedicine (Pesticidi ifitomedicina), 20: 9–28. (In Serbian with English abstract).
Kranz, J., H. Schmutterer and W. Koch (1977). Diseases, pests and weeds in tropical crops. Verlag Paul Parey, Berlin and Hamburg. Pp 666.
Lu, H., J. Zhou, S. Xiong and S. Zhao (2010). Effects of low-intensity microwave radiation on Tribolium castaneum physiological and biochemical characteristics and survival. J. Insect Physiol., 56(9):1356-1361.
Lu, H. H., J. C. Zhou, D. Yan, S. M. Zhao and S. B. Xiong (2011). Effects of microwave radiation and conductive heating on Tribolium castaneum microstructure. J. Micron, 42: 36-41.
Madrid, F. J., N. D. G. White and S. R. Loschiavo (1990). Insects in stored cereals, and their association with farming practices in southern Manitoba. The Canad. Entomol., 122:515-523.
Manickavasagan, A., P. M. K. Alahakoon, T. K. Al-Busaidi, S. Al-Adawi, A. K. Al-Wahaibi, A. A. Al-Raeesi, R. Al-Yahyai and D. S. Jayas (2013). Disinfestation of stored dates using microwave energy. J. Stored Pro. Res., 55: 1-5.
Marín-Huachaca, N., H. Delincée, J. Mancini-Filho and A. L. C. H. Villavicencio (2005). Use of the DNA Comet Assay to detect beef meat treated by ionizing radiation. Meat Sci., 71:446–450.
Mohamed, Eman A. I., H. M. Elzun, Nadia A. El-Aidy and G. M. M. Zayed (2011). Efficacy of microwave energy on: 1- Cowpea weevil, Callosobruchus maculatus (F), some of chemical contents and viability for faba bean seeds. J. Plant Prot. Pathol., Mansoura Univ., 2 (3): 283 – 294.
Nair, G. R., Z. F. Li, Y. Gariepy and V. Raghavan (2011). Microwave drying of corn (Zea mays L. spp.) for the seed industry. Dry Technol., 29: 1291-1296.
Nawrot, J., J. R.Warchalewski, D. Piasecka-Kwiatkowska, A. Niewiadoma, M. Gawlak, S. T. Grundas and J. Fornal (2006). The effect of some biochemical and technological properties of wheat grain on granary weevil (Sitophilus granaries L.)(Coleoptera: Crculionidae)development. Proceedings of 9th Int. Working Conf. Stored Product Protection. Brazil, Brazilian Post-Harvest Association, Campinas. Pp. 400-407.
Nelson, S. O. (1996). Review and assessment of radio frequency and microwave energy for stored-grain insects control. Trans. ASAE, 39(4): 1475-1484.
Pandir, D. and E. Guven (2014). Effect of microwave radiation on stored product pest Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Türk. entomol. derg., 38(2): 135-147.
Qi, Y. and W. Burkholder (1981). Protection of stored wheat from the granary weevil by vegetable oils. J. Econ. Entomol., 74: 502–505.
Qu, C., H. Wang, S. Liu, F. Wang and C. Liu (2017). Effects of microwave heating of wheat on its functional properties and accelerated storage. J. Food Sci. Technol., 54(11):3699-3706.
Que, W. (2013). Effects of microwave heating on baking quality of wheat. M.Sc. Thesis, Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Canada.
Rajendran, S. (2002).Postharvest pest losses. In: Encyclopedia of pest management. Pimental, D. (Ed.), Marcel Dekker, Ine., New York, pp. 654-656.
Sang, W., W. H. Ma, L. Qiu, Z. H. Zhu and C. L. Lei (2012). The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J. Insect Physiol., 58: 830–836.
Shaw, M. D. and A. L. Kaen (1967). Starch gel electrophoresis of enzymes. Biological Research Laboratory Publication. Howthron Center, Northville, Michigan, USA.
Sinha, R. N. and F. L. Watters (1985). Insect pests of flour mills, grain elevators and feed mills and their control. Agric. Canada, Ottawa, Publication No.1776.
Taylor, B. and A. Powell (1982). Isolation of plant DNA and RNA. Focus, 4:4–6.
Tungjitwitayakul, J., N. Tatun, B. Vajarasathira and S. Sakurai (2016). Effects of ultraviolet-C and microwave irradiation on the expression of heat shock protein genes in the maize weevil (Coleoptera: Curculionidae). Eur. J. Entomol., 113: 135–142.
Vadivambal, R. (2009). Disinfestation of stored grain insects using microwave energy. Ph.D Thesis, Department of Biosystems Engineering University of Manitoba Winnipeg, Manitoba, Canada.
Vadivambal, R., D. S. Jayas and N. D. G. White (2008). Determination of mortality of different life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) in stored barley using microwaves. J. Econ. Entomol., 101 (3):1011–1021.
Vadivambal, R., O. F. Deji, D. S. Jayas and N. D. G. White (2010). Disinfestation of stored corn using microwave energy. Agric. Biol. J. N. Am., 1(1): 18-26.
Valizadegan, O., A. A. Pourmirza and M. H. Safaralizadeh (2009). Combination of microwave radiation and cold storage for control of Oryzalephilus surinamensis (L.) (Col. Silvanidae). J. Biol. Sci., 9: 231–236.
Valizadegan, O., A. A. Pourmirza and M. H. Safaralizadeh (2011).The impact of microwaves irradiation and temperature manipulation for control of stored-products insects. African J. Biotechnol., 10(61): 13256-13262.
Walter, V.E. (1990). Stored product pests. In: handbook of pest control., Moreland D. Storyk (editor). Franzak & Foster Co., Cleveland, OH, USA. pp: 526-529.
Wang, S., J. Tang, J. A. Johnson, E. Mitcham, J. D. Hansen, G. Hallman, S. R. Drake and Y. Wang (2003). Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosyst. Eng., 85: 201-212.
Warchalewski, J. R. and J. Gralik (2010). Influence of microwave heating on biological activities and electrophoretic pattern of albumin fraction of wheat grain. Cereal Chem., 87(1):35-41.
Warchalewski, J. R., J. Gralik, S. Grundas, Anna Pruska-Kędzior and Z. Kędzior (2011). Changes in microwave-treated wheat grain properties. In: Advances inInduction and Microwave Heating of Mineral and Organic Materials, S. Grundas (Ed.), 503-530.
Webber, M. M., F. S. Barnes, L. A. Seltzer, T. R. Bouldin and K. N. Prasad (1980). Short microwave pulses cause ultrastructural membrane damage in neuroblastoma cells. J. Ultrastruct.Res., 71: 321–330.
Youssef, M. K., E. A. Badr, A. Abou-Youssef and S. El-Deeb (1989).Comparative electrophoretic pattern of isozymes in four species of tilapia.3rd Egyptian British Conf. on Animal, Fish and Poultry Production, Alexandria, 7-10 October, 849-858.