• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of the Advances in Agricultural Researches
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 30 (2025)
Volume Volume 29 (2024)
Volume Volume 28 (2023)
Volume Volume 27 (2022)
Volume Volume 26 (2021)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 25 (2020)
Volume Volume 24 (2019)
Volume Volume 23 (2018)
Volume Volume 22 (2017)
Volume Volume 21 (2016)
Volume Volume 20 (2015)
Volume Volume 19 (2014)
Fouad, M., Abou-Elnasr, H., Aly, M., El-Aswad, A. (2021). Degradation Kinetics and Half-Lives of Fenitrothion and Thiobencarb in The New Reclaimed Calcareous Soil of Egypt Using GC-MS. Journal of the Advances in Agricultural Researches, 26(1), 9-19. doi: 10.21608/jalexu.2021.165351
Mohamed Ryad Fouad; Hamza Abou-Elnasr; Maher Aly; Ahmed El-Aswad. "Degradation Kinetics and Half-Lives of Fenitrothion and Thiobencarb in The New Reclaimed Calcareous Soil of Egypt Using GC-MS". Journal of the Advances in Agricultural Researches, 26, 1, 2021, 9-19. doi: 10.21608/jalexu.2021.165351
Fouad, M., Abou-Elnasr, H., Aly, M., El-Aswad, A. (2021). 'Degradation Kinetics and Half-Lives of Fenitrothion and Thiobencarb in The New Reclaimed Calcareous Soil of Egypt Using GC-MS', Journal of the Advances in Agricultural Researches, 26(1), pp. 9-19. doi: 10.21608/jalexu.2021.165351
Fouad, M., Abou-Elnasr, H., Aly, M., El-Aswad, A. Degradation Kinetics and Half-Lives of Fenitrothion and Thiobencarb in The New Reclaimed Calcareous Soil of Egypt Using GC-MS. Journal of the Advances in Agricultural Researches, 2021; 26(1): 9-19. doi: 10.21608/jalexu.2021.165351

Degradation Kinetics and Half-Lives of Fenitrothion and Thiobencarb in The New Reclaimed Calcareous Soil of Egypt Using GC-MS

Article 2, Volume 26, Issue 1 - Serial Number 98, March 2021, Page 9-19  XML PDF (1.09 MB)
Document Type: Research papers
DOI: 10.21608/jalexu.2021.165351
View on SCiNiTO View on SCiNiTO
Authors
Mohamed Ryad Fouad1; Hamza Abou-Elnasr2; Maher Aly1; Ahmed El-Aswad1
1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
2National Institue of Oceanography and Fisheries (NIOF), Central Laboratories Unit (CLU), Alexandria, Egypt
Abstract
The degradation process of pesticides is one of the mechanisms for losing sush chemical from the soil after application. The persistence, degradation kinetics and half-lives of fenitrothion (insecticide) and thiobencarb (herbicide) in the new reclaimed calcareous soil in Egypt were studied under laboratory conditions. The recovery percentages of fenitrothion and thiobencarb were 89.67 and 88.34%, respectively. The results of degradation kinetics showed that residues of fenitrothion and thiobencarb were rapidly decreased during the first five days after treatment. Residues of fenitrothion and thiobencarb remained on the second day were 72.45% and 57.63%, while on the fifth day were 37.72 and 47.18%, respectively. Both tested pesticides disappeared very rapidly from the soil following a bi-phasic pattern. According to the graphical and integral methods, the fit model to describe the degradation kinetic of fenitrothion and thiobencarb is the first order model. The rate constant (k) values for degradation of the two pesticides were 0.036 and 0.068 for fenitrothion and thiobencarb, respectively. The estimated values of half-life were 19.36 days for fenitrothion and 10.24 days for thiobencarb. In general, thiobencarb degraded in sandy clay loam soil about twice faster than fenitrothion.
Keywords
Fenitrothion; insecticide; thiobencarb; herbicide; degradation; kinetics; half-life
Main Subjects
Agriculture-toxicology interactions; Soil science
References
Adhya T. K.; Wahid P. A.; Sethunathan N. (1987). Persistence and biodegradation of selected organophosphorus insecticides in flooded versus non-flooded soils. Biology and Fertility of Soils. 5(1): 36-40.‏

Aguilera-del Real A.; Valverde-Garcia A.; Camacho-Ferre F. (1999). Behavior of methamidophos resdues in peppers, cucumbers, and cherry tomatoes grown in a greenhouse: Evaluation be decline curves. Journal of Agricultural and Food Chemistry. 47(8): 3355-3358.

Anyusheva M.; Lamers M.; La N.; Nguyen V. V.; Streck T. (2016). Persistence and leaching of two pesticides in a paddy soil in northern Vietnam. Clean–Soil, Air, Water. 44(7): 858-866.

Armaghan, M., and M. M. Amini (2008). Adsorption of diazinon and fenitothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent. Colloid Journal 71:583–588.

Ayrancı, E., and N. Hoda (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon cloth. Chemosphere 60:1600–1607.

Badawy M. E.; El-Aswad A. F.; Aly M. I. and Fouad M. R. (2017). Effect of Different Soil Treatments on Dissipation of Chlorantraniliprole and Dehydrogenase Activity Using Experimental Modeling Design. International Journal of Advanced Research in Chemical Science. 4 (12): 7-23.

Bailey, G. W. and J. L. White (1970). Factors influencing the adsorption, desorption, and movement of pesticides in soil. Single Pesticide Volume: The Triazine Herbicides, 29-92.

Becker, D. L., and S. C. Wilson (1980). The use of activated carbon for the treatment of pesticides and pesticidal wastes. In Carbon Adsorption Handbook, ed. by P. N. Cheremisinoff and F. Ellebush, 167–212. Ann Arbor, MI: Ann Harbor Science.

Braverman, M.P., S. J. Locascio, J. A. Dusky and A. G. Hornsby (1990). Mobility and bioactivity of thiobencarb. Weed Sci. 38, 607–614.

Camara M. A.; Fuster A.; Oliva J. (2020). Determination of pesticide residues in edible snails with QuEChERS coupled to GC-MS/MS. Food Additivesand Contaminants. Part A: 1-7.‏

Doran, G., P. Eberbach and S. Helliwell (2008). The mobility of thiobencarb and fipronil in two flooded rice-growing soils. J. Environ. Sci. Heal. B 43, 490–497.

Fardillah F.; Ruhimat A.; Priatna N. (2020, March). Self regulated Learning Student Through Teaching Materials Statistik Based on Minitab Software. In Journal of Physics: Conference Series (Vol. 1477, p. 042065).‏

Fouad M. R. (2017) Behaviour of some pesticides in soil. M. Sc. Thesis. Faculty of Agriculture, Alexandria University.

Gee G. W.; Bauder J. W.; Klute A. (1986). Particle-size analysis. Methods of soil analysis Part 1 Physical and Mineralogical Methods. 383-411.

Guarda, P. M., Pontes, A. M., de S. Domiciano, R., da S. Gualberto, L., B. Mendes, D., A. Guarda, E., and da Silva, J. E. (2020). Determination of Carbamates and Thiocarbamates in Water, Soil and Sediment of the Formoso River, TO, Brazil. Chemistry & biodiversity, 17(4), e1900717.

Jokanovic, M., and M. Kosanovic (2010). Neurotoxic effects in patients poisoned with organophosphate pesticides. Environmental Toxicology and Pharmacology 29:195–201.

Kawamoto, K. and K. Urano (1990). Parameters for predicting fate of organochlorine pesticides in the environment. 3. Biodegradation rate constants. Chemosphere 21, 1141–1152.

Khan S. U.; Dupont S (1987) Bound pesticide residues and their bioavailability. In: Greenhalgh R.; Roberts T. R (eds) Pesticide Science and Biotechnology. Proc 6th Int Cong Pesticide Chemistry, IUPAC. Blackwell Sci Pub. London. pp 417-420.

Khan, S. U. (2016). Pesticides in the soil environment. Elsevier.

Khay S.; Choi J. H.; Abd El-Aty A. M.; Mamun M. I.; Park B. J.; Goudah A.; Shin H. C.; Shim J. H. (2008) Dissipation behavior of lufenuron, benzoylphenylurea insecticide, in/on Chinese cabbage applied by foliar spraying under greenhouse conditions. Bulletin of Environmental Contamination and Toxicology 81(4):369-372.

Kodaka, R., T. Sugano, T. Katagi, Y. Takimoto (2003). Clay-catalyzed nitration of a carbarnate fungicide diethofencarb. J. Agric. Food Chem. 51, 7730–7737.

Kouras, A., A. Zouboulis, C. Samara, and Th. Kouimtzis (1998). Removal of pesticides from aqueous solution by combined physicochemical process—The behavior of lindane. Environmental Pollution 103:193–202.

Kovacević, D., J. Lemić, M. Damjanović, R. Petronijević, D. Janaćković and T. Stanić (2011). Fenitrothion adsorption–desorption on organo–minerals. Applied Clay Science, 52(1-2), 109-114.

Leppert, B. C.; J.C. Markle, R.C. Helt and G.H. Fujie (1983). J. Agric. Food Chem., 31, 220-223.

Likas D. T.; D. T.; Tsiropoulos N. G. (2007). Behaviour of fenitrothion residues in leaves and soil of vineyard after treatment with microencapsulate and emulsified formulations. International Journal of Environmental and Analytical Chemistry. 87(13-14): 927-935.

Lopez-Lopez T.; Martinez-Vidal J. L.; Gil-Garcia M. D.; Martinez-Galera M.; Rodriguez-Lallena J. A.(2003). Benzoylphenylurea residues in peppers and zucchinis grown in greenhouses: determination of decline times and pre-harvest intervals by modelling. Pest Management Science. 60: 183-190.

Mabury, S. A., J. S. Cox and D. G. Crosby (1996). Environmental fate of rice pesticides in California. Rev. Environ. Contam. Toxicol. 147, 71–117.

Mahmoudi, M., R. Rahnemaie, S. Soufizadeh, M. J. Malakouti, A. Es-haghi (2011). Residual effect of thiobencarb and oxadiargyl on spinach and lettuce in rotation with rice. J. Agric. Sci. Technol. 13, 785–794.

Martinez-Galera M.; Gil-Garcia M. D.; Rodriguez-Lallena J. A.; Lopez-Lopez, J. L.; Martinez-Vidal. (2003). Dissipation of pyrethroid residues in peppers, zucchinis, and green beans exposed to field treatments in greenhouses: evaluation by decline curves. Journal Agricultural and Food Chemistry. 51(19): 5745-5751.

Meng, D., Jiang, W., Li, J., Huang, L., Zhai, L., Zhang, L. and Liao, X. (2019). An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health, Part B, 54(4), 336-343.

Moye H. A.; Malagodi M. H.; Yoh J.; Leibee G. L.; Ku C. C.; Wislocki P. G. (1987). Residues of avermectin B1a in rotational crops and soils following soil treatment with [14C] avermectin B1a. Journal Agricultural and Food Chemistry. 35: 859-864.

Nelson D. W.; Sommers L. E.; Sparks D.; Page A.; Helmke P.; Loeppert R.; Soltanpour P.; Tabatabai M.; Johnston C.; Sumner M. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis Part 3-chemical methods. 961-1010.

Oiwa M.; Yamaguchi K.; Hayashi H.; Saitoh T. (2020). Rapid sorption of fenitrothion on didodecyldimethylammonium bromide-montmorillonite organoclay followed by the degradation into less toxic 3-methyl-4-nitrophenolate. Journal of Environmental Chemical Engineering. 8 (5): 104000.

Quayle, W.C., D. P. Oliver and S. Zrna (2006). Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture. J. Agric. Food Chem. 54, 7213–7220.

Redondo, M.J., M. J. Ruiz, R. Boluda and G. Font (1994). Determination of thiobencarb residues in water and soil using solid-phase extraction disks. J. Chromatogr. A 678, 375–379.

Ross, L. J. and R. J. Sava (1986). Fate of thiobencarb and molinate in rice fields. J. Environ. Qual. 15, 220–225.

Roy, S., Kumar, R., Roy, S. and Sharma, C. B. (1996). Biodegradation of fenitrothion in soil. Biomedical Chromatography, 10(2), 60-64.

Scheunert I. (1992): Transformation and degradation of pesticides in soil. In: Chemistry of Plant Protection, Vol. 8 (W. Ebing, ed.-in-chief). Springer Verlag, Berlin - Heidelberg - New York, pp. 23-75.

 

Scholz-Starke B.; Egerer S.; Schäffer A.; Toschki A.; Roßig M. (2017) Higher-tier Multi-species Studies in Soil: Prospects and Applications for the Environmental Risk Assessment of Pesticides Ecotoxicology and Genotoxicology. p 31-58.

Sudo, M., T. Kunimatsu and T. Okubo (2002). Concentration and loading of pesticide residues in Lake Biwa basin (Japan). Water Res. 36, 315–329.

Sundaram, K. M. S., L. Sloane and R. Nott (1997). Adsorption and desorption kinetics of diflubenzuron and fenitrothion in two different boreal forest soils. Journal of Environmental Science & Health Part B, 32(1), 1-24.

Szeto, S. Y. and Sundaram, K. M. S. (1980). Simplified method for the analysis of some carbamate insecticides in foliage, forest soil and fish tissue by direct gas-liquid chromatography. Journal of Chromatography A, 200, 179-184.

Takimoto Y.; Hirota M.; Inui H.; Miyamoto J.(1976). Journal Pesticide Science. 1: 131.

  Recognition and Management of Pesticide Poisonings, 5th ed. Washington, DC: EPA.

Wang D.; Naito H.; Nakajima T. (2012). The Toxicity of Fenitrothion and Permethrin. F. Perveen (Ed.), Insecticides - Pest Engineering, In Tech, Rijeka, Croatia, pp. 85-98.

Wang, R., Bingner, R. L., Yuan, Y., Locke, M., Herring, G., Denton, D. and Zhang, M. (2021). Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system. Science of The Total Environment, 767, 144898.

Wauchope R. D.; Buttler T. M.; Harnsby A. G.; Augustijn-Beckers P. W. M.; Burt J. P. (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. Reviews of Springer, Environmental Contamination and Toxicology.123: 1-163.

WHO (2004). The WHO recommended classification of pesticides by hazard and guidelines to classification. International Programme on Chemical Safety, Switzerland.

Yuan S.; Li C.; Zhang Y.; Yu H.; Xie Y.; Guo Y.; Yao W. (2020). Degradation of parathion methyl in bovine milk by high-intensity ultrasound: degradation kinetics, products and their corresponding toxicity. Food Chemistry. 127103.‏

Statistics
Article View: 400
PDF Download: 579
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.